Reprinted from the Transactions of the Faraday Society, No. 258,
Vol. XXXIX, Part i, January, 1943

THE ELASTICITY OF A NETWORK OF LONG-CHAIN
MOLECULES. I



By L. R. G. Treloar.
Received 21st October, 1942. Y,

According to the kinetic theory of elasticity of rubber-like materials,
originally propounded by Meyer, v. Susich and Valko,' and subsequently
develops by Guth and Mark* and by Kuhn,® the retractive force in
stretched rubber is due to the thermal motions of the carbon atoms of
the molecular chain. On the assumption of free (or effectively free)
rotations about each of the C—C bonds, it is shown that in the absence
of external restraints the molecule will take up a randomly-kinked form
in which its average length (measured by the distance between its ends)
is only a small fraction of the length of the fully extended chain. The
statistical treatment of the problem  *leads to a formula defining the
probability of a given length in terms of the molecular parameters.

An extension of the treatment to a three-dimensional network of
molecules, in order to account for the properties of a rubber in bulk, has
been attempted by various authors, no tably by Kuhn *and by Wall. ®
Their results, however, are not in agreement. In the present paper the
methods of Kuhn and of Wall are critically examined, and the source of
the discrepancies between their results is demonstrated.

Wairs Treatment of Elongation.

In this discussion the historical order will be reversed, and W all's work
will be considered before that of Kiihn which appeared 8 years earlier.

W orking on iie basis of Kuhn's statistics of the individual molecule
W all set out to calculate the entropy of a network of Ng equal molecules
making up a cylinder of length in the undeformed and lin the deformed
state. Forthi structure the distribution of lengths {i.e. distances between
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junction points) of the molecules in the undeformed state wasassumed to
be that given by Kuhn’s formula, which may be written

P(x.y, z)dx .dy .dz =" « -« * (* e+  dy.de . i
(x.y, 2) y o ( y (i)

In this equation X, y and z represent the comporients of length ofa given
molecule along each of the three co-ordinate axes, and

B*Si:3-IeZ—--_-— ----- e (la) .

If being the C—C bond distance, Z the number of links in the moleciilar
chain, and Bthe supplement of the valence angle. To describe the de-
formation Wall assumed that the volume remains unchanged, and that the
components of length of each molecule change in the same ratio as the
corresponding dimensions of the bulk rubber. Thus, writing a for ///#, X,y
and ~ are changed to ow, a-“yand respectively,* and the corres-
ponding distribution function is

P{x,y, x) dx .dy .dz * - + .dy.dz

The problem is to determine the probability P that the assembly of
molecules should be found in the state represented by equation {2), w h”?
the probability that a given molecule has components of length X, y and z
is given by equation (i). The result found by Wall is ,
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where Po isthe probability of the mostprobable distribution. The entropy
change due to the extension is therefore

S-So = ftinP/Po = -iJVofc(«“+ | - 3) . .@)

The tension F isthen obtained by applying the thermodjmamic relation

giving, for a cylinder of original cross-sectional area i cm.*,
F= S )

where N is the number of molecules per c.c., M the molecular weight and p

the density.
Equation (5) applies for a uni-directional compression as well as for an

elongation.

2. Wall’s Treatment of Shear.

A simple shear may be defined by a change of the dimensions of the
specimen from X,y and z to ax, yj<xand As before Wall assumed that
the molecular components of length change in the same ratio as the
external dimensions, The function representing the distribution of mole-
cular lengths in the state of shear is therefore

Yx, y, 2) dx .dy .dz = + .dy .dz . (6
p{x, vy, 2) y ™ y (6)

. In his earlier paper *Wall took account only of changes in the * comiwnents

of length. His later treatment,® -which is obviously the more correct, is here
considered. . o
t Love, Mathematical Theory of Elasticity, Cambridge University Press, and

Ed. p. 34.



The result was obtained in terms of the work required to produce a shear
deformation ~
W = ANKkTo* A N )]

from which it is seen that the m</dulus of rigidity Gappears as a constant.
That is to say, the network obeys Hooke’s law under shear, though not
under elongation.

3. Kuhn’s Treatment of Elongation.

Kuhn made the same fundamental assumptions as Wall, but worked
from a consideration of the entropy of the single molecule, integrating
over the whole assembly of molecules in order to obtain the total entropy.
From equation (i) the entropy s of a single molecule is given by Kuhn as

s=klnp =d— +3F+ ®)=c, - . . B

where is the distance between its ends. The contribution to the total
entropy perc.c. due to molecules having length components between X and
X dx,y andy 6y,zand ~ + dzis obtained by multiplying this entropy
s by.the appropriate number of molecules, i.e.

s.Np(x.y.s)~.dy.".

N being the number of molecules per c.c. Integration gives the total
entropy Si corresponding to the unstretched state,

Sj = J + .dy.dz. )
- co
For the deformed state corresponding to an extension in the X direction
of amount y (= ///, — 1) the entropy S'j is represented by the integral
+@®
Jj IN[Ci-fc)3* (*>+y>+«*)]"e-Wa+T)*+{ff'+a*)(i+y)ldjr.dy .dz (lo)
-

in which the exponential term represents the distribution of molecular
lengths after deformation. Integration of expressions (9) and (10) leads
to the approximate relation

S\ _ 5 = - e an

Entropy due to r, and Tg Values.—The entropy thus determined,
referred to by Kuhn as the partial entropy due to the values, was not
considered to representthe whole of the entropy change on extension. He
argued that besides having a " length ” the molecule may be considered
to have a “ breadth " and a " thickness ” I\, and that it is nec”sary
to take into account also the partial entropies associated with the and
r* values. If Z is the number of links in the chain, is defined as the
distance of the middle Unk from the Une joining the ends, and y* as the
distance of links numbered Z/4 and 3.~/4 (counting from one end of the
chain) from the plane containing and I,, Kuhn's method of p*Imlating
the entropy due to the and fj values will not be considered here. The
result is that an additipnal entropy of amount — NKy* is introduced for
each of these values, sothat the total entropy change on extension becomes

S'_ So= - - ZNkv* = - o (12)

This leads directly to the stress-strain relation

F = jNKTy = yNkT{a —1) . . . (13)



This result does not agree with,that of Wall (equation (5)), the one relation
being linear and the other non-linear. The reasons for this discrepancy
will now be considered.

4. Criticism of Ruhn*s Treatment.

The r, and r. Values®—The probability function (1) is derived by con-
sidering the number of possible configurations of the molecule when one
end is fixed at the origin of co-ordinates and the other is contained within
a small volume element d;r.d*.d?. On Kuhn's basis the entropy is
reduced on extension because the number of possible configurations is
reduced. In stating the probability in terms of he includes all possible
configurations, and therefore all possible values of and r,. The r, and
f* values cannot be considered to have an existence independently of
and to attribute a separate entropy to them is incorrect.

If the and values are omitted, equation (13) becomes

F = 3NKTy . (14)

W all’s equation (5) gives for the modulus at zero extension
(15)

The modified formula (14) thus agrees with W all's equation for sufl&ciently
small elongations.

It will now be shown that the remaiiung difference between the results
of Wail and of Kuhn is due to the introduction of an approximation by
the latter author. '

5. Amendment of Kuhn”s Treatment.

(a) Elongatiofi.—From Kuhn’s equations (9) and 10) the entropy
change on extension may be written

+e
- Si) = ff(*+ y+ s%e~okd+y*+z¥)dx . dy . d?.
NkB*
+O© -®
_Jij + + + .dy .ds . (16)

- 00
Insertion of the appropriate values of the definite integrals * gives

= | A A +y)y + 1+ v

or  A(S\. sO- 1. + FTy] A 2(“*+ . “ 3)-

Equation (17) is identical with Wail's eqn. (4), and leads directly to
the stress-strain relation (5), withoutany approximation. The approxima-
tion introduced by Kuhn (valid for small values of y) was evidently to
write

Nzl y 4y,
I+ y

and thus to obtain

- S8~ - y» . Ifif. equation (11))

+Jeans, Dynamical Theory of Gases, 3rd Ed. p. 435.



40 ELASTICITY OF LONG-CHAIN MOLECULES

It isobvious that the formula of Kuhn is valid only for elongations of con-
siderably less than loo %. |Itisunfortunate that Kuhn did not emphasise
the fact that an approximation was involved in the derivation of his
apparently linear stress-strain relation.

6) Shear.—Although Kuhn did not deal with the shear deformation,
this problem also may be dealt with by his method. W riting the total
entropy after shearing in the form

+®
S'=jjjivie, - +F .dy .da (i8)

- 00

and following exactly the same process as in the case of elongation, we
obtain

- SJ= - i(a>+ - a) . . . (19)

which, on substitution of a for a — » leads to Wall’s result {equation (7))

W = ANkToK

6. Some General Considerations.

The more accurate application of Kuhn's method thus leads to the
same stress-strain relations as those derived by Wall. The two methods
may be considered to be equivalent mathematically, since they differ only
in the particular stage of the argument at which the conception of the
entropy is introduced. Wall considered only the entropy to 1~ associated
with the whole assembly of molecules; Kuhn, on the other hand, con-
sidered that an entropy could be associated with the individual molecule.
W all's treatment must be considered the more satisfactory because it
avoids the difficulties encountered in attempting to assign a physical
meaning to the entropy of a single molecule.

An equation of similar form to (5) has been derived indepeijidently by
Guth and James,* who state that it represwits the experimental data for

both elongation and compression of rubber to a close approximation. In
using the equations of the kinetic theory, however, it isimportant to keep
in mind the assumptions which form their basis. In Kuhn's statistic”

treatment of the paiaffin molecule, from which all the later developments
have proceeded, it is assumed that the distance r is small com part with
the outstretched length offthe chain. The formul* derived from the
network theory would therefore not be expected to apply to a state of
deformation in which any important fraction of the molecules were nearly
fuUy extended. They caimot therefore be expected to account accurately
for the whole of the stress-strain curve of rubber.

It is interesting to note that equations (5) and {7) contain, implicitly,
M, the “ molecular weight" between junction points, but do not speci-
fically contain Z, the number of links, or 9, the supplement of the valence
angle (which are included in the parameter » (equation (la)). The equa-
tions would therefore not be affected if the freedom of rotation about
bonds were imperfect, since, as Kuhn has shown,* a chain of Z links
possessing hindered rotation is equivalent to a chain containing a smaller
number Zj$ of freely rotating links (where s is a small number), provided,
of course, there are stiU enough efiective links to justify the application of
statistical methods. The same argument shows that the elastic properties
of the network will not be afEected by the presence of a proportion of non-
rotating bonds, such as the C = C bond in rubber.



Summary. t

The treatment of the elasticity of a molecular network by the method
of Wall is discussed and compared with the earlier treatmeat of Kuhn.
It is shown that a more accurate application of Kuhn’s method leads to
formulae for elongation and shear in agreement with those of Wall.
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