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In the second paper of this series ” the statistical theory of Wall was
developed to take account of the most general type of homogeneous de-
formation of a rubber, and a simple equation was derived giving the free
energy of deformation in terms of the three principal strains. It was
pointed out that this equation would not be expected to apply to a real
rubber when any of the principal strains was very large, owing to the
fact that the formula for the distribution of molecular lengths, on which
it is based, is no longer applicable if an important fraction of the molecules
are extended to a point approaching their maximum outstretched length.
Later experimental work « confirmed that the theoretical equations were
in reasonably good agreement with experimental data at small or moderate
strains, but not at very large strains.

In order to extend the theory to cover the whole range of possible
strains which can be applied to rubber, it is necessary to make use of
the more accurate distribution functions which have since been worked
out.* It is the purpose of the present paper to show how this may be
achieved, and to present theoretical curves which represent the s™ess-
strain properties of an ideal rubber over the whole range of deformations.
It is not po”ible to derive a general algebraical equation covering any
type of strain, as was done for the simpler case of small or moderate
strains, but it appears to be necessary to work out each type of strain in
detail. The ty ~ of strain considered are the simple elongation and
2-dimensional extension (or compression).

Two possible lines of attack on the problem of incorporating the effect
of the “ non-Gausslan ” probability distributions of molecular length
(or, briefly, “ non-Gaussian chains ) were considered. The first was on
the basis of Wall's * theory, and the second on the basis of Flory and
Rehner’s “ later theory. The former was not proceeded with, on account
of certain difl&culties to which no very satisfactory solution was found.
It will be sufficient to indicate here that these difficulties were mainly
associated with the problem of how to formulate the distribution of
chain lengths corresponding to the deformed state. It can no longer
be assumed that the chain components change on deformation in the
same ratio as the bulk rubber, as was done in the case of Gaussian chains.

Flory and Rehner’s model, on the other hand, involves the introduc-
tion of no new principle, when applied to non-Gaussian chains, and for
this reason was chosen as a basis for the present work.

Before the non-Gaussian case is considered, the original analysis of
Flory and Rehner for Gaussian chains will be extended and generalised.
It will be shown that the model leads to the same general equation for the
free energy ol deformation as had previously been obtained on the basis
of Wall's theory.

‘ Treloar, Trans, Faraday Soc., 1943.39*241.  «Treloar, 1944,40,39'
*Treloar, ibid., in press. *Wall, J. Chem. Physics, 1942. 485*
«Flory and Rehner, ibid., 1943. I1, 512.



The Flory-Rehner Model for Gaussian Chains.

The Flory-Rehner method involves the calculation of the entropy
of formation of a network of molecules of equal contour or chain length.
Four chains are assumed to radiate from each point of cross-linkage, and

it is assumed that the restraints imposed on
any given junction point by the remainder of
the network will not be afffted by fixing the
four nearest-neighbour junction points at their
average positions, i.e., at the comers of a
regular tetrahedron, Fig. i. It is further
assumed that the mechanical properties of the
network can be computed from those of this
“ average ” cell of four chains, and that the
dimensions of this cell are changed by the
deformation in the same ratio as the dimensions
of the bulk rubber.

The significant step in the calculation of the
entropy of formation, in connection with the
present problem, is that whiph concerns the
junction of the four chains converging from
the fixed comers of the tetrahedron. The

Fig. I.—~TheFlory-Rehner Probability that these four chains should meet

tetrahedral model. in a given small volume, Lr = dx dy d* may be
written ¢

m{x. y, z){dx d:iy d2)* = 'Pf W{xiyi Zi)dxi dyi dzi )

where x%yiZi are the co-ordinates of the same volume element At referred,

respectively, to the four comers A, B, C, D of the tetrahedron. For
Gaussian chains we have

W[x,y.z) = ""e-A"N+y' +)dxdyds . . . (@

and in this special case, eqn. (i) reduces to the form

0i{x, y,z) = ?"exp [ - J )
X

The quantity £ri* has to be evaluated at all points of space. Integration
then gives,the probability of the four chains meeting anywhere in space
and consequently the entropy corresponding to the formation process.
This entropy is calculated both for the stretched and unstretched states.
The difference is the required entropy of deformation,

Flory and Rehner consider the apphcation of a simple elongation a
m two special directions with respect to the cell, namely along OY and
OZ (Fig. i) and show that the resultant entropy is the same in each of
these cases. They point out that, strictly, an average should be taken
over all possible directions of the elongation, but make the reasonable
assumption that the result obtained for the two special directions may be
taken to represent this average.

In the following treatment, Flory and Rehner’s analysis will be extended
in two ways, namely :

(1) By the application of the most general type of homogeneous
deformation, and

(2) By establishing that the entropy of deformation is the same for

all possible directions of the principal strains with respect to the tetra-
hedral cell.

* Flory and Rehner's notation has been slightly modified.



Suppose the positions of the corners A, B, C, D to be defined originally
with respect to the co-ordinate system OX, OY, OZ, the origin being at
the centre of the tetrahedron, OX parallel to DC and OZ perpendicular
to the plane BCD. The average length of each chain in the undeformed
state is OA = A

The general homogeneous deformation may be described by stretches
in the fatio a, and ag in three mutually perpendicular directions, O X",
OY', O0Z'—the principal axes of strain. It vl be assumed that these,
axes are related to OX, OY, OZ by the direction cosines (Zj, m,, %), (/j.

N> (%, «,) respectively. If a point P has co-ordinates {X.y, 2)
referred to OX, OY, OZ, its co-ordinates {x', y\ z') referred to OX', OY",
OZ'are given by the relations

x'=hx + Ly + 1*
y' = tnx -I- -i-
' = X+ «ty + o»?.

The co-ordinates of the points A, B, C, D in the strained state, referred
to OX', OY', OZ' may thus be shown to be the following :

For A;

xJX = ail,, yIX = a™m,, = a,«,.
ForB;

Xj\ = (2v2ral3 — ~i3)«l

SwJA = (2%2w./3 - m8/3)aj

= (2\/2«al3 - «8/3)«a

ForC:

ANIA = (V2Z,0V3 - d21,/3 - [./3)«1

yJIA = (V2»Hj/V3 - V2W./3 - m /3)a,

zJX = (v'2«ilv'3 - v™2n,/3 - n,/3)ot8
ForD:

= (- V2zZilV3 “ V2Z,J3 - hb)Mi. etc.
We have now to take any point P, having co-ordinates {x\ y', z') and *
find -= PA> + PB> + PC“+ PDV (C/. eqn. (3))
PAVA* = {X'IX - Zsa)* + {y'[X - -H {Z'jX - «,aa)«
PB*/A* = IX'fX ~ {2V 2his - 7/3)«il* + L
PCVA* = [X'/X - {V21JVS - V2/./V3 - [/3)«»]"+ -
PDVA« = [X'/X"MNiIV21L,IV3 + V2IJV3 - 23)«.]*+ o me
so that

I, - (2v2ias3 - hb)

- {VaUV3- </2ltb- hb) + (vaixiv3 + Vv2/./3 - %3/3)]
+ < L/3)* + (V2A,IV3 - V2i,/3 - A[3)
-f (v'2;,/i/5H- V2r./3 + Z,3)4

+ similar expressiot\s4n y' and z', leading to

= AN+ fi*A«(li* + I+ 1>) + -

= A et
since li* f-Z*4-7Z*= i, etc. n
Thus = 45« + A«(«/+ a» + *>)/3] N ()]

where S is the distance of P from the origin.

The expression (4) replaces eqn. (17) in Flory and Rehner's paper.®
If this is inserted in eqn. (3) and the integration iscarried out in the manner
described in their paper, taking A= 3/2”* the expression for the entropy
of deformation becomes

A5 = - iNKk(cc," + ax -i- acx - 3) . . . (5

in which N is the number of molecular chains. The entropy of deforma-
tion is thus proved to be independent of the direction cosines of the



principal axes of strain. Flory’s expression (19" is a special case of the
more general form (5), obtained by putting aj = a, a* = aj = a"i. The
free energy of deformation, fV. is obtained directly from (5),

W = iNkTioc," + + a,* - 3) ] . ¢ (&
This formula is identical with that derived in Il on the basis of Wall’s
theory. In the previous derivation, however, it was necessary to assume

that the volume remained constant under deformation. This assumption
is not involved in the present argument.

Having now established the equivalence of the methods of Flory
and Rehner and of Wall with regard to Gaussian chains, and having shown
that the geometrical relation of the elementary cell to the axes of strain
makes no difference to the results, we may proceed with more confidence
to the application of Flory and Rehner's model to the more complex
case of non-Gaussian chains.

The Flory-Rehner Model for Non-Gaussian Chains.

The only difference involved in the application to non-Gaussian chains
is that in place of the distribution represented by equation (2), we have

where P(r) is the distribution function for the random chain, evaluated
in the. preceding paper.* In the non-Gaussian region eqn. (i) no longer
reduces to (3), and consequently at(x,y, S) is not simply a function of Zr,*.

In principle, it is necessary to find a/(r,y, s), wliich is the product of
the separate probabilities that each of the four chains should terminate
in the volume element at P, at all points in space, and to integrate over
the whole volume. The result would give the required probability of
the four chains meeting anywhere in space. If it was desired to obtain
a complete stress-strain relation, it would be necessary to carry out this
calculation at a number of different strains.

Such a procedure might well appear impossibly laborious, butin practice
it is possible to introduce approximations which greatly reduce the amount
of work involved. The principle adopted was to locate by trial the point
at which the probability density o>y, z) was a maximum, and then to
explore the variation of w along the directions of the three co-ordinate
axes, taking this point as origin. In the case of Gaussian chains, as will
be seen from eqn. (4), the point of maximum probability density is at the
centre of the tetrahedron, and the variation of & may be expressed in
terms of the maximum probability density to,and the distance s from the
centre by the Gaussian formula

G= . . . )

which shows the variation of probability to be spherically symmetrical
and independent of strain. For non-Gaussian chains, on the other hand,
it is found, when the calculations are carried out, that the variation is no
longer spherically symmetrical. The variation along any one direction,
however, remains approximately Gaussian, even though the rate of fall
is different along the three directions chosen. In this way there are
obtained three equations of the type

- o0i0'e-4A*»* . . . . 8)

From (7) the total probability, in the Gaussian case, is proportional to

Q- e- ~ . . .9)



The comparable expression for the non-Gaussian case was assumed to be

TO . . . . « Uo)

corresponding to an ellipsoidal distribution of probability density. The
entropy change in deformation is thus dependent on two terms, i.e.,

T = . . m <>

of which the first represents the probability at the maximum, which may
be called the “ intensity factor,” whilst the second, or “ volume factor ”
represents the rate at which the probability falls away on moving outwards
from the maximum.

The foregoing analysis of the spatial distribution of probability density,
though admittedly only approximate, is quite adequate for the purpose.
The reason is that the second term in {l1) is found to be, in all cases, very
small compared with the first. Thus for 25-link chains, the “ volume
factor ” never accounted for more than 3 % of the total entropy change,
whilst for loo-link chains its maximum contribution was always less than
I % of the whole. The amount of work involved in calculating the spatial
distribution, even in this approximate manner, is thus justified rather
by the desire for theoretical completeness than on account of its practical
significance.

Simple Elongation.
In the non-Gaussian case it is no longer true that the eiitropy change

will be independent of the direction of the elongation with respect to the
tetrahedron, and the choice of this direction has to be made arbitrarily.

TABLE |.—Simple Elongation.
Calculated values of AS/2/c(a* + 2/a —3) for 4-chain cell. 25 and 100.
n- 25. 100.
o -ds -ds
alka* + 8/a - 3)’ 2li(ac+ 2/a-3)"
1-5 i-00. 20 ICO,
20 102, 2.5 1I'00f
2.5 104, 3*0 I-01,
3-0 1-074 440 103,
3.5 I-11* 5%0 1054
1-167 6*0 i*08j
4*5 1-251 7*0 12*
4-75 I 310 80 1-17,
5*0 1-38, 90 1%256
525 1*480 100 1*394
5%5 163 no 1*63
575 1-88 11*5 1-89
5-85 203

A few calculations were, however, made from which some idea of the
effect of stretching in other directions may be obtained.

The stretching direction chosen was gilong OX (Fig, 1). The comers
of the tetrahedral cell were assumed to move in such a way that their
A-co-ordinates changed in the ratio a whilst their y- and ~-co>ordinates



changed in the ratio a~*. The entropy was calculated at a number of
values of a. For the Gaussian region this entropy has the value
—2/c(a* -f 2/a — 3); it is convenient, therefore, to express the cal-
culated entropy A5 in the form of the ratio which it bears to the quantity
2/c(a> + 2/a — 3). These ratios are given in Table I.

Fig. 2.

Simple elonga-
tion. The function
FINKT for a net-
work of random
chains of 25 and
100 links.

It is interesting to notice that the functions A5/2/c(a* -|- 2/a — 3)
for the two different chain lengths are of similar form and differ only in
the range of a covered. Especially is this true when a is large, the value
of the function for n = 25 at a given value of a being almost exactly
the same as for « = 100 and twice that value of a. This property would
be useful if it were required to interpolate for other values of n.

The tensile force is proportional to — dAS/da, and the most direct
way of obtaining this is from the slope of the curve of AS plotted against
a. However, it is more accurate to derive the force indirectly, from a
plot of the above function AS/2/c(a* H- 2/a — 3) against a. If this function
is denoted by ait is easy to show that

idA S
k da

The values of da/da were obtained by drawing a smooth curve through
the points given in Table I, and finding its slope at these points. The
advantage of this method is that dA5/d« is obtained as the sum of two
terms, of which only the first (which is generally the smaller) involves
the slope taken from the curve. |If F is the tensile force per square cm.

a<7
2(a* -f- 2/a - 3)~ -f-4(a - ila«)o . . (12)



of the original cross-section of the bulk rubber, and if N is the number of
molecular chains per c.c., we have then

F 1 dAS
NkT 4/e da ' * ' '

since the tetrahedron contains four chains.

The functions FjNkT are reproduced in Fig. 2.

Effect of Different Directions of Extension.—Differences between
different directions of extension become increasingly significant with
increasing extension. However, these differences affect only the detail
of the stress-strain curve, and not its general shape. For the ~-direction,
which differs most seriously from the ;v-direction, the value of AS/k at
a= 55, n—25 was found to be 80'5 compared with 89'8 for the
A-direction. The same value of AS/k (80%) would be given a stretch of
about a = 5*37 in the ;r-direction. This indicates the kind of maximum
divergence between the different directions of stretching. Since, ideally,
it is the average entropy for stretching in all directions which is required,
it is considered that any error introduced by considering only the ;v-direc-
tion is likely to be very slight.

Two-Dimensional Extension.

In the 2-dimensional extension the ;v-diraension of the tetrahedron
was reduced in the ratio a (where a < i) while the y and z dimensions
were increased in the ratio a”i. As before, the entropy may conveniently
be represented by AS/2fc(a* -f 2/a — 3) or a which is given in Table II,
as a function of the linear extension ratio a~i.

TABLE Il.—Two-Dimensional Extension.
Calculated values of AS/2/Ma* + 2/a —3) for 4-chain cell, n = 25 and 100.

ft- 25. ft—100.

Linear eztensioa ratio -AS Linear extension ratio -JS
i/Vot. 2Ac(am+ 2/«-3)’ 2li(«*+a/a-3)
1*414 1'0xy 2-0 100,
2:0 i-03i 30 101,
2-45 i-05> 4-0 1*038
3*0 i*09j 5-0 1067
3-46 i*id0 6*0 I'no=
40 122, 7-0 146,
4-47 i-33i 8-0 1-24.
5*0 1-56 9*0
525 1*75 1070 1-59

10-5 1-78

Once again, it is seen that the entropy curves for the two chain lengths
are very similar, but in the present case it is the scale of a~i which is
doubled on multiplying n by 4.

Since there is assumed to be no change of volume of the rubber, a
strain of the kind considered may be regarded either as a unidirectional
compression or as a 2-dimensional extension. From the entropy it is
possible to calculate either the compressive force in the first case, or the
tensile force in the second. For the compressive force, per cm.* of the
original section, we have

[ = = TAASIaueeereeeorsessorrreeesessse (14)



The tensile force per cm. in a sheet of original thickness i c¢cm., stretched
in two dimensions is

t- a«l. . . . i (15)

The second isthe more convenient quantity for graphical representation.
The compressive force is formally equivalent to the tensUe force in a
simple elongation, hence from {12) and (13)

“ A ~ as +
Hence, introducing (15), the tension in the equivalent 2-dimensional
extension is

Fig. 3.

Two>diznensional
extension. The
function tfNKT
for a network of
random chains of
25 and 1co links.

The quantity do/da in this expression is not obtainable accurately from a
direct plot of aagainst a because of the rapid variation of e with a. It is
more satisfactory to plot a against a"i and thus to obtain da/d(a*").
This is converted to d<r/da by the relation

1 do
da 2n td(i=n
so that (16) becomes

4 . dff
NKT = 2 (a o 2/a _B)d(a“i) + 41 - a*

The result of the application of this equation is shown in Fig. 3.



So far the work has been concerned with a network of randomly-linked
chains. The resultant stress-strain relations, shown in Figs. 2 and 3.
give the stresses divided by NKT where N is the number of chains per ex.

To proceed further, in order to derive the actual stresses in kg./cm.>
on the rubber, it is necessary to find a way of introducing N numerically.
For this purpose our mathematical chain must be given a mass. The
quantity NKT is then equal to pRTjM, where M is the “ molecular "
weight of the chain, and pthe density of the bulk rubber.

For the appropriate value of M, the random chain may be compared
with the polyisoprene chain. The last paper showed that the polyiso-
prene chain is statistically equivalent to a random chain of 1*42 links per
isoprene unit. The 25-hnk random chain is therefore equivalent to a ch?iin
of 17-6 isoprene units, which would have a molecular weight of 1200.
Similarly the loo-link random chain is equivalent to a polyisoprene of
molecular weight 4800. Introduction of the appropriate factors gives,
then, the force in kg./cm.*. The resulting curves are shown in Figs. 4 and 5,
for a temperature of 25®C.

Comparison with Experiment.

In Figs. 4 and 5 the experimental stress-strain relations for the latex
rubber, reported in a previous paper,* are plotted for comparison with
the theoretical curves. The value of NKT for this rubber was 63, which
corresponds to a " molecular ” weight of 4100. {The temperature in these

Fig. 4.

Simple elongation.
S tress-strain curves
for polyisoprene
rubber.

M —molecular
weight between
INints  of cross-
linkage.

experiments was 50®C.) Its extensibility, for both simple and 2-dimen-
sional extension, should therefore be about 8 % lower than for the theoret-
ical rubber corresponding to M = 4800, since the extensibility varies
approximately as the square root of the chain length. Its actual extensi-
bihty, judging by the position of the upward bend in the curve, appears
to be about 80 % in the simple extension, and 55 % in the 2-dimensional



extension, of the extensibility for the theoretical M = 4800, or about

87 and 60 % respectively of the theoretical for M = 4100.

These differences between the experimental and theoretical extensi-
bilities are very much smaller than the author was led to expect from an
earlier and very much cruder theoretical analysis.s

General Discussion.

It may be useful to recall the assumptions on which the theoretical
treatment of the problem of the elasticity of a network of long-chain
molecules is based. These are (i) that the molecules are endowed with
freedom of rotation about single bonds; (2) that the lengths of mole-
cular chain between junction points are all the same; (3) that the pro-
perties of the rubber are correctly represented by a simple “ cell ¥ of four
chains, whose average displacement length is the root-mean-square length
of the free chain, and (4) that there is no change in internal energy on
deformation at constant temperature, so that the work of deformation
may be equated to the entropy. The additional assumption of no volume
change on deformation is not really an assumption but a well-established
experimental fact.

Given the geometrical construction of the molecular chains, which
determines their statistical distribution of displacement length, it is
possible, on the basis of the above four assumptions, to derive the stress-
strain relationships for any tj” of strain. In this process, there is, for
a ~“ven rubber, only one variable parameter—the chain contour length.
This determines quantitatively both the vertical and horizontal scales.
It is found that, for moderate strains the vertical scale {i.e. stress) is in-
versely proportional to the chain contour length, whilst the horizontal
range, or maximum strain is a function of the extensibility of the molecule,
and for simple elongation or 2-dimensional extension is proportional to
the square root of the chain length. Though the paper is concerned
with the polyisoprene chain, these general properties will be the same

*Treloar, Rep. Prog. Physics, 1943, 9, 113.



for molecules of different geometrical construction. The general features
of the stress-strain relations are fundamental and would be expected from
any form of network theory, since they are derived directly from the
fundamental statistical properties of long-chain molecules. The exact
form of the stress-strain curves, is, however, less firmly established, owing
to the arbitrary features of a simplifying nature necessarily introduced
in any chosen model. Thus, for example, the assumption that the nearest-
neighbour junction points to a given junction point may be regarded as
fixed in their average positions, and the difficulty, referred to by Flory
and Rehner," of knowing which kind of average should be chosen in this
connection, are arbitrary features which other possible models might
avoid or improve on. The same applies also to the obviously inaccurate
assumption that all the chains are of the same length.

A further source of error is connected with the derivation of the
statistical distribution of molecular displacement lengths. In this deriva-
tion the volume occupied by the chain atoms has been neglected. If
these defects were removed, the average chain displacement length would
be increased, and since the maximum length would be unchanged, it
follows that the extensibility of the molecule and consequently of the
network would be reduced. This factor may very well be the main reason
for the discrepancy between the experimental and theoretical extensi-
bilities discussed above.

The difficulties are, however, not all on the theoretical side. The
determination of a real equilibrium stress-strain curve for -rubber is a
m atter of very considerable difficulty, particularly at large strains, where
such effects as crystallisation and mechanical relaxation are very serious.
In the experimental curves shown in this paper it is not suggested that
these effects have been eliminated, and their ihclusion is justified only
by the absence of any more satisfactory data. It might be thought
possible to remove these experimental difficulties by working with a syn-
thetic, rubber which does not crystallise, but then one encounters the
difficulty that such rubbers are invariably mechanically weak and will
not permit the application of large strains. Also their precise molecular
constitution is not, and cannot be known.

A further difficulty, of a related kind, lies in the fact that the deforma-
tion, particularly when large, may result in internal energy changes.
Such changes may arise from the modification of the intermolecular forces
by orientation (leading in the extreme case to crystallisation) or from forces
between the atoms of a single chain. Such changes may be estimated
experimentally and the contribution to the total free energy resulting
from them may be subtracted so as to obtain the pure entropy change,
as has been attempted by Anthony, Caston and Guth,” but the experi-
mental difficulties involved are here also likely to prove very serious at
large strains.

For the reasons advanced in this paragraph, it is evident that caution
must be exercised in making a quantitative comparison between the
theoretical stress-strain curves and the experimental data available.
In spite of the difficulties, however, it is clear that the theory leads to
stress-strain relations comparable with the experimental curves in all
their characteristic features. This is particularly well shown for the
case of a 2-dimensional extension (Fig. 5). ItTseemis justifiable to conclude
that the main elastic properties of a well-vulcanised rubber, even at large
strains, are related primarily {though not necessarily exclusively) to the
statistical configurations of molecules in a yciimensional network.

Summary.

The accurate functions representing the distribution of length of long-
chain molecules are introduced into the Flory-Rehner model, by means

* Anthony, Caston and Gath, J. Physic. Chem., 1942. 46, 826.



of which the mechanical properties of a network of such molecules, cor-
responding to a vulcanised rubber, may be calculated. Stress-strain curves
are obtained for (a) simple elongation and (6) 2-dimensional extension,
using chain length corresponding to polyisoprene rubbers of molecular
weight (M) between junction points of the network of 1200 and 4800
respectively. These curves show all the essential features of the corre-
sponding experimental curves for natural rubber, right up to the breaking
point, though the extensibility of the real rubber is significantly less than
the theoretical. They show also that the stress for a given small or
moderate deformation is inversely proportional to M, whilst the range
of extensibility is directly proportional to M*.

Though an exact agreement between the theoretical and experimental
stress-strain relations is not to be expected, on account of the many
difl&culties encountered in matters of detail both on the theoretical and
on the experimental side, the degree of agreement revealed is considered
to warrant the conclusion that the main elastic properties of vulcanised
rubber are essentially statistical properties of a network of long-chain
molecules.

This work forms part of the programme of fundamental research on
rubber undertaken by the Board of the British Rubber Producers’ Research
Association.
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