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The problem of determining the statistical distribution of “ displace-
ment length " {i.e. end-to-end distance) of a long-chain molecule of given
chain length is one of fundamental importance in the development of the
theory of elasticity for rubber-like materials. Distribution functions
for the paraffin ' and polyisoprene * (natural rubber) chains have been
published by the author in papers which will be referred to subsequently
as | and Il respectively. The method used depended on process” carried
out graphically, no method having been discovered of treating the
statistics of these molecules in precise analytical terms.

The simplest “ molecular ™ structure which can be considered from
the analytical standpoint is the chain of universally jointed equal links,
and, as pointed out in I, an accurate solution to the problem of the
statistical distribution of length for such a chain may be obtained when
the number of links is small {e.g. 6) by a method due to Rayleigh.*
The method is impracticable when the number of links is large.

In the present paper a formula is derived which is applicable to much
longer chains. -This is obtained by a simple transformation of the result
worked out by Hall *and Irwin *in 1927 ”“n connection with the theory
of random sampling. The relevance of the Hall-lIrwin formula to the
present problem was brought to the attention of the author by Dr. A. D.
Booth of these laboratories.

The formula has been applied to chains of 25 and 100 links, and the
resultant distribution curves are compared with those previously derived
for the polyisoprene chain. The application of the results to the deter-
mination of the stress-strain relations of rubber will be considered in the
following paper.

The X-Distribution for a Random Chain.

Let the chain be composed of n links, each of length /, such that each
link isequally likely to be in any direction in space.* The distance between
the ends of the chain is denoted by r, and the projection of r on a fixed
line OX by X. Itisrequired ultimately to find the distribution of y-values.
As an intermediate step the distribution of ;p-values will be obtained.

*Treloar, Proc. Physic. Soc., 1943, 55, 345,

»Treloar, Trans. Faraday Soc 1944, 40, 109.

-Raylelgh Phil. Mag., 1919. 37, 321.

*fla 1, Biometrika, 1927 *19, 240. ®Irwin, ibid., 1927, 19, 225.

*By this is meant that if the successive links ara””“pr~*nted by vectors
radiating from a point, the end points of these vectors, ofI"A"average will be
uniformly distributed over the surface of a sphere.



By eqn. (12) of I the probability that a single link has a component
along OX between X and X dx is given by

= . . S0

i.e. the probability is constant over the range —I to +1 and zero * else-
where. A distribution of this type may be referred to as a “ rectangular
population.” The ;r-component for the whole chain, which is the alge-
braical sum of the separate ;tr-components for the individual links, is there-
fore the sum of n values of X chosen at random from the population
represented by (i).

The problem of finding the ;»f-distribution for the whole chain is there-
fore equivalent to finding the distribution of the mean of n samples chosen
at random from a rectangular population. For the mean is given by

i
and in the present problem we require the total ~r-component for the chain
which is

nm.

The solution to this problem in statistics has been derived by Hall *
and by Irwin *and is discussed briefly by Kendall.® The formula obtained
by these authors gives the distribution of the mean of n samples from a
rectangular population extending from —” to {i.e. corresponding to
a link of length |), and is set out below :

where Kk is defined by

ft n
In this expression f{m) is the probability that the mean has the value
m, and represents the number of combinations of n things taken

5at a time. It will be seen that the function f{m) is represented by n
arcs making contact at the successive points given by w = k/n. Both/(m)
and its first derivative are continuous functions. The function f{m) is
symmetrical about the ordinate m = and extends fromm = otow = i.

To adapt this solution to the case of the chain it is only necessary to
remember that what we require is the total X instead of the mean. The
transformation is effected by putting w = ~(i — x/nl), thus spreading
the distribution out in the ratio 2nl along the axis of abscissae and moving
the origin to the position of the central maximum. At the same time the
ordinates are reduced in the ratio i/-znl so as to maintain unit area under
the curve. The'result is n

*.0 .

where f and™m = J(i — x/nt).
w It



The r-Distribution Function.

To find the distribution of displacement length r we note that for chains
of a given length r the corresponding distribution of ;»r-values is given
by an expression comparable with eqn. (i), i.e.

p,{x)dx = A~ \x\<r

in which the limits of X are determined by r. 1In a continuous distribution’
of r-v<ues, those chains whose r-values exceed a given (positive) value X

will contribute to p{x), whilst those for which r <X make no contribution

to p{x). Hence the change in p{X) over the range dx will be proportional

to the number of chains whose r-values lie between X and dx. In

mathematical terms

d
rdp{x)n _lerP{Y) = mom .

where P{r) is the probability of a displacement length r. In this expression
the positive half only of the symmetrical function p{x) is considered, hence
the factor J is introduced on the right-hand side.

Application of (4) to the function (3) gives

where - < m < and w =:i(i — */«/),
n n

This is the exact distribution function covering the whole range of r.

To illustrate the use of this formula, we may consider the case n = 6.
We then have

s—o0

giving for the 3 separate regions of r

= 4l<r<sel.h=o0

o<r<2z20k=2 ()

A These expressions, when reduced, are identical with those derived by
Rayleigh « by an entirely different method. .

The functions p{x) and P(r) have been numerically evaluated for chains
of 25 and 100 links each of unit length and the results are given in Tables

I and Il. Forn = 100 the calculations were carried out by the Scientific
Computing Service, for whose co-operation the au”™or i®indebted.
The form of the r-functions for n = 25 and is shown in

Fig. 1, in which log P{r) is plotted against (f/r*)*, r, (= w”"peing the length



of the fuUy-extended chain.

of attention, namely:

(i) When r is small the curves approximate to the “normal

Gaussian distribution, represented by the equation

X AND r Distribution.

TABLE 1.

log,, #(*). -logic P(f).

P(r) - (S = 3/2nI*)

For 25-link Random Chain.

| 0-89 1-51 . ip(f)x m"-*x (I - r !
g i;f 8_;; (3) The general form of the function
7 224 1-06 P(r) is relatively insensitive to
number of chain-links.
9 301 1-69
N 4-14 2-63 . . ;
13 5.57 3-89 Comparison with Paraffin and
15 7-37 5-53 Polyisoprene Chains.
17 9-66 7-65 There is a close similarity between the
19 12-64 10-46 distribution functions for the randomly-
zr 16-87 14-47 jointed chain of equal links and
23 2409 21-35 previously obtained for the paraf&n and
For 100-link Randonn Chain. POlyisoprene structures. In Fig.
distribution function for the 64-isoprene
g i’ég; le:?)(f)i? chain, represente_d by discrete points,
10 i-gii 1-034 shown for comparison. ) _ )
14 2.437 1-366 A more striking comparison is obtained
18 3-279 1-984 by plotting logip(j') against log (i —r/r,,),
22 4-342 2-867  \which, when r is large, gives a straight line
26 5-631 g_’4088 of slope n — 2 in the case of a random
::;’2 o0 7054 chain. (C/. egn. (8)) From Fig. 2 it is
38 10-955 8978 seen that this comparatively simple
holds approximately also for the polyiso-
42 13-261 11-187 prene chains. Assuming for the moment
46 15-864 13-70 that the poljrisoprene chain may be
50 18-79 16-54 placed by a rEindom chain of a suitable
54 32'(7)7 19-74 number of links, then the equivalent
58 576 23-34 number of links may be obtained from
62 29-90 27-40 the slopes of these logarithmic plots.
66 34.57 31-99 results are given in Table II.
70 38-89 37-22 From the shape of the distribution at
74 46-01 43-26 high r-values we are thus led to the con-
78 53-i8 50-33 clusion that in this region, for all
lengths, each isoprene unit is equivalent
gg %-%(l) gg:g’g to about 1-44 random links.
90 87-07 83-82 Another way of obtaining the number
109-04 105-54 of links in the equivalent random chain
o 98 156-27 152-28 (if such there be) is to consider

mean square length

Kend
AWall,

o

au,
/

exponent )3 in the Gaussian approximation
(7) for small r. Wall’s * formula for the

of the polyisoprene chain leads to the value
A A= 3-72Z (A, .
Statistics, Vol. | (C. Griffin & Co.) 1943, p. 240.

." Chem. Physics, 1943, 11, 67.

Certain features of these functions are worthy

which is shown for comparison in Fig. i.
A (2) When r is large {i.e. r > o0-jrJ) only
the first term (s = o), of the summation in
-------------- (5) is important, so that



Z being tte total number of bonds. For a 64-isoprene chain Z = 256,
aad since r* = 3/2/3*we obtain for p* the value 0-00157.* The maximum
length r* for the 64-isoprene chain is 294 a.
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For a random chain of n links, each of length I, /5x= 3/2til* =
Hence, to find the equivalent number of links in the random chain having
the same maxi-
TABLE IlI. mum length r, as
the 64 -isoprene

Tjoﬁigsfilr?%?‘ﬁg? ilgp; n. No. of Isoprene Units. chain, ~we put
= 294 A.in the
32 44-0 46-0 1-437 above expression.
64 904 92-4 1-443 The result is

128 184 186 1-452 n = 90-5, or 1*42 "
256 369 371 1-448 links per isoprene

unit.  This com-
pares favourably withn = 92-4 obtained fromthe high-r region.
We conclude thereforethat alongpolyisoprene chain is statistically

. This differs irom the value 0-001325 given in Il on a< >unt of the ap-
proximations involved in the previous melSiod, which are discnsbed in the paper.



equivalent over the whole range of extension to a random chain containing
about 1*42 links for each isoprene unit.

The paraffin chain is not quite so straightforward. The 80-link paraffin
again gives a linear plot of log P[r)/r against log (i ~ r/f«) the slope
being 347%, corresponding to « = 36-5. From the value of in the
Gaussian region, however, the value obtained for n for a chain of the same
fully-extended length is 267. The discrepancy is rather large, and must
be taken to mean that the paraffin chain is not statistically equivalent
to a random chain over the whole range of extension.

Fig. 2.

Plot of logip(r)
against log (i - r/fj
for polyisoprene chains
of*32, 64, 22S and 256
isoprene units, showing
that P(f) approximates
to the same form as
in the case of random
chains.

It cannot therefore be assumed that any chain-like structure will
approximate statistically to the random chain of equal links over the whole
range of r. The fact of this approximation in the case of the polyisoprene
chain is a result of its particuli- geometrical structure.

Summary,

A formula is derived for the complete function representing the proba-
bility of a given distance between the ends of a chain of universally jointed
Aual links. The formula is computed forchains of 25 and 100 lin™. The*
distribution functions derived from this formula are compared with those
previously worked out by an independent method for polyisoprene and
paraffin chains. It is shown that the polyisoprene chain is statistically
equivalent to a ,tandomly-jointed chain of length corresponding to 1*42
links per isoprene unit.

This work *orms part of a programme of fundamental research on
rubber undertaken by the Board of the British Rubber Producers’
Research Association.
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