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The relative merits of the osmotic and viscosity Amonog _
termination of the molecular weights of high poly nave been widely

discussed. The purpose of this paper is to present a new theoretical
justification for the osmotic method, and to draw attention to the condi-
tions under which the viscosity method may be employed.

Osmotic Pressure Measurements.

The experimental details of osmotic pressure measurements on high
polymer solutions have been described recently by a number of authors.®
The resultsobtained give the osmotic pressure wofthe solution as a function
ofthe polymerconcentration C. The problem to be considered here isthat of
deducing the molecular weight M of the polymer from these data. The
cleissical osmotic pressure equation is that of van't Hoff
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according to which U/c should be independent of C and equal to

In general, polymer solutions do not obey this law, but 77/C increases
approximately linearly with C, the slope depending on the nature of the
solvent. An illustration of this

behaviour is given by Fig.

showing some of Dobry's meas- (a) Acttone.

urements of the osmotic pressure Mol!.

of nitrocellulose in various sol- {c)Nitrobtnt€ne.

vents.*(a) These results show
that the limiting value of TIjC
at infinite dilution is the same

for all the solvents examined. *0-4
No case has been reported in
jBA”hich this has been proved to
~ e untrue, but in the case of
polymers of very high molecular
weight it is not usually possible
to demonstrate it with certainty, (O Mcc.)
owing to the difficulty of extra- 6 s 0 12 14
polating data showing a large
slope. This problem of extra- Fig. 1.—Osmotic Pressures of Nitro-
polation furnishes one of the cellulose Solutions at 22®C.
1(a) Dobry, ]. chim. physique, 1935, 33, 50; Koll. Z,, 1937. 190. {b)

Carter and Record, J.C.S., 1939, 660. (c) Gee, Trans. Faraday Soc., 1940, 36,
;162 ; 1942.38, 147. (d) Flory, J.A.C.S., 1943. 65, 372. («) Fuoss and Mead,
J. Physic. Chem., 1943, 47, 59.



major experimental difficulties of the osmotic method, and is perhaps
best dealt with by choice of a solvent which reduces the dependence « of
njC on C. Having estimated the limiting value we write

VZj .- Moo

Before one can place any reliance on molecular weights derived from
(2) it is necessary to consider its theoretical basis. By thermodynamic
reasoning, it may be shown that, for dilute solutions of any solute,*

ITF,=-AG, = TAS,-Ail,, . . @)

where K, is the molar volume of the solute and AG,, ASo, AHo are the
increases in Gibbs’ free energy, entropy and heat content when one mole
of solvent is added to a large bulk of solution. For ideal solutions,
All, = o, and equation (3) gives a relation between the osmotic pressure
and the entropy of dilution AS,. Now it is possible to calculate AS,,
statistically for simple systems by making use of Boltzmann’s equation *
relating the entropy S of a system with its probability P :

S = fINP e )

Thus, if the solute and solvent molecules are of similar size, we may calcu-
late P, and therefore S, by considering the number of ways of arranging
the molecules on a pseudo-crystal lattice. It is readily shown in this
way that the entropy of dilution is given by *

] N
AS, = i2In (- 41y . . .6)

where N,, are the numbers of solute and solvent molecules in the
mixture. For dilute solutions, the log. term may be expanded, giving

RV
AS,ARN,/N,A °C. . . . (6)

If AHf = o, substitution of (6) into (3) leads at once to van’t Hoff’s law.
If A/Mo is not negligible, it may be shown statistically * that, for dilute
solutions,

AH, = «FoC« . . . .M

where a is a constant.
Hence, S N e

from which (2) follows at once.

The problem of calculating AS, becomes much more difficult when the
solute molecules are large, but an approximate solution hsis been obtained ’
for the special case that the polymer consists of long flexible chains which
may be regarded as divisible into segments, each the size of a solvents,
molecule, with complete freedom of rotation between segments. It has
been shown that this model leads to an equation of the same form as (8),
and therefore that (2) is satisfied. This model is clearly too simple to be
applicable to polymer solutions generally, but in the next section it will

’ Gee, Trans. Faraday Soc., 1940, 36, 1171.

» Guggenheim, Modern Thermodynamics (Methuen, 1933), p. 97.

‘ Fowler and Guggenheim, Statistical Thermodynamics (Cambridge, 1939),

62.*

*1bid., p. 163.

* This has been confirmed experimentally.*

» Hildebrand, Solubility of Non-electrolytes (Reinhold, 1936), ch. 3.

" Flory, J. Chem. Physics, 1942, 10, 51. Huggins, Ann. N.Y. Acad. Set.,
*942, 43. 1- Miller, Proc. Canib. Phil. Soc., 1942, 38, 109 ; 1943, 39, 131.



be shown tliat equation (2) is in fact applicable to solute molecules of any
size and shape.

Limiting Form of the Entropy of Dilution.

We consider the arrangement, on a lattice of N,, + fiN, sites, of
solvent molecules, each occupying one site, and N, polymer molecules,
each requiring n sites, and we confine our attention to highly dilute solu-
tions, so that nN, < < N,,. The lattice is to be filled by arranging the
polymer molecules first, and it is evident that all the sites are available to
the first segment of the first polymer molecule. Having fixed the first
segment, the number of ways of arranging the remaining segments of this
molecule will be some definite number, say, which will depend on the
size, shape and flexibility of the polymer molecule. The total number of
arrangements of the first polymer molecule on the lattice will thus be
pi{No -f nN,) If the solution is sufficiently dilute, there will be
very nearly the same number of ways of arranging each remaining polymer
molecule, since interference of one polymer with another will be negligible.
Hence the total number of ways of arranging the N, polymer molecules
will be approximately ipiN,t)». The number of ways of arranging these
N, polymer molecules on nN, sites {i.e. in the pure polymer) is unknown,
but we may write it £is p*. Using Boltzmann’s equation, the increase of
entropy on mixing the N, polymer molecules with solvent mole-
cules is seen to be

AS5 AM N ,In(/.,dV ) . . )

Repetition of this calculation with the number of solvent molecules in-
creased by 8NO0 gives for the entropy of mixing of N, polymer
molecules with {N* + 8NQ) solvent molecules :

Now, by definition,
AS,, = +

where N is Avogadro’s number.
Substituting from (9) and (10) in (11)

(6)

Since it has already been assumed that the solutionisso dilute that polymer-
polymer contacts are negligible, it follows that further dilution does not
change the number or nature of the intermolecular contacts, so that
AHg= 0. A better way of expressing this conclusion is to say that it is
evident from this model that at sufficiently high dilution AHo becomes
negligible compared with TAS,. It follows, therefore, that van’t Hoff’s
law is the correct limiting law at infinite dilution, whatever may be the
size and shape of the solute molecules.
If we write van't Hoff’s equation in the form

teT

where Visthe volume of solvent in which N, solute molecules are dissolved,
it is evident that what we actually obtain by osmotic measurements is
thenumber ofsolutemolecules, i.e., thenumber of kinetically distinct
units ofsolute. Ifeach of these isassociated with a number of solvent
molecules, the latter will not be included in the molecular weight. If,



however, two or more solute molecules are associated with each other, the
molecular weight found will be that of the complex. Association of the
solvent will have no effect on the result, which is also independent of the
nature of the solvent. It will be shown in a subsequent publication that
this is also true of mixed solvents.

The above discussion shows that the theoretical basis of the osmotic
method is firmly established, and that if (/7/C)o can be found accurately,
the absolute molecular weight of the solute—as dispersed in the solvent
which has been employed—may be calculated from it with complete
confidence.

The Viscosity Method.

Much the simplest atkd most widely used method of obtaining the
molecular weight of long chain polymers depends on the measurement of
the viscosity of a dilute solution. The theoretical and experimental basis
of this has been widely discussed, *and all that can be done in this brief
paper isto indicate the author’s own views as to the usefulness of viscosity
measurements.

Various attempts to calculate the viscosity of polymer solutions have
led to equations of the general form

FF NS K M A o (13)

where [rf], the intrinsic viscosity is the limiting value at infinite dilution of
Vgpic' %p being the specific viscosity of the solution. K, jSare constants,
the latter being assigned various values between o and 2, according to
the shape of the polymer molecule in solution, and the particular model
used in the analysis. Staudinger’s well-known equation is seen to be a
special case of {13), with ~ = i. In the present state of the theory, it
does not seem possible to calculate absolute values of either K or ~ for
any particular polymer solution, although the theory gives good ground
for believing that an equation of the form (13) should hold for a series of
polymers differing only in molecular weight. The most convenient way
of treating this is to plot log. [ij] against log. M, and in Fig. 2 some recent
data on fractionated polymers are presented in this wajr. It is evident
that the equation holds over a wide range of M, giving the following values
of I3

Cellulose acetate in acetone * . . M = 25,000 to 125,000 p = 0%67.
Polyisobutylene in Cyclohexane ~{d} . ™M = 6,000 to 1,300,000 * = 0 64.
Rubber in benzene * * . M = 7,000 to 350,000 )S= 0%96.

The value of ~ found for rubber in benzene is, within experimental
error, unity, so that Staudinger’s law holds, whereas it clearly does not
hold for the other solutions. It is, however, to be noted from Fig. 2 that
squalene {M,= 410) does not fall on the straight line drawn-to represent
the data for the rubber fractions, so that equation (13) evidently breaks
down for sufficiently low values of M. Similar behaviour has been re-
ported for other homologous series, and the empirical relationship

[t/ = KM + & . . . . (14)
found to fit. It seems quite probable that a similar correcting term a

*See, for a summary : Gee, Ann. Repis. Chem. Soc., 1942, 7.

®Bartovics and Mark, J.A.C.S., 1943, 65, 1901.

*The point at M = 7.000 refers to a fractionated polyisoprene prepared by
my colleague. Dr. BoUand. Further materials of this kind are under examination
in order to fix the lower part of the curve more precisely. It is hoped to report
the results shortly.

3037 *3, 2142. Flory, ibid., 1940. 63.



may need to be added to the more general equation (13) in order to extend
its application to low molecular polymers.

The discussion so far has been confined to polymers which are believed
to be essentially linear in structure, and approximately homogeneous.
For such materials it appears
that viscosity measurements can
be wused to measure molecular
weights, once values of K and
have been found by calibration
against the osmotic method. It
is to be noted that K {and pos-
sibly to a smaller extent ) de-
pends on the nature of the solvent.
We have now to consider what
information, if any, can be ob-
tained from viscosity measure-
ments on polymers which are not
necessarily either homogeneous or
of linear structure.

Confining attention first to

linear poljnners, it is clear that /'], OHulose Acetitc 1» Acetont

since the viscosity method applies . L. .
to homogeneous materials, it must /' 2.Pol"isobutyUtie inCtjclohexani®

3-5

give some sort of average molec- \  5./Aubhtr in Benzene
ular weight for a mixture. This Z5

average is not, however, the same

as that given by the osmotic £

method, which is easily seen to

conform to the natural definition Fig. 2.—Dependauce of Viscosity on
of an average molecular weight Molecular Weight.

as the total weight of material

divided by the total number of molecules. The viscosity average molec.
ular weight of molecules of molecular weight Af, (where i takes all

v'alues) may be shown to be
e . (15)
Mvit€ = iMi

For ~ = | this reduces to a weight average.” For any value of > o
the viscosity average is greater than the osmotic average, and the ratio
between them may be approximately 2 for an unfractionated polymer.*
It is evident that if the distribution is unknown, the viscosity alone will
give only an approximate molecular weight, though the order of magnitude
will be correct unless the distribution is very unusual [e.g., a low molecular
polymer with a proportion of very high molecular material). When both
osmotic and viscosity molecular weights have been determined, a com-
parison of the two gives a rough idea of the homogeneity of the sample.
The method is, however, extremely crude, and the approximate agreement
of the two values is not inconsistent with a moderately broad distribution.

The viscosity method becomes of much less value when there is a possi-
bility of the polymer being non-linear in structure. The intrinsic viscosity
depends essentially on the length of the polymer molecules and, for a

” Huggins, Ind. Eng. Chem., 1943, 35, 980.
Lansing and Kraemer, J. Physic. Chem., 1935. 39, 153.
* The theoretical ratio for an unfractionated polyester is exactly 2 if 3=
“ Flory, J.A.C.S., 1936, 58, 1877.
“ Staudinger and Fischer, J. prakt. Chem., 1941, 157, 19.



given molecular weight, should be less for a branched than for a linear
structure. This expectation has been abundantly borne out by some
work on the thermal degradation of rubber carried out in collaboration
with Dr. Bolland.* Although the osmotic and viscosity molecular weights
of many of these products were approximately equal, fractionation showed
them to contain a wide range of molecular sizes, and to be of branched
structure. In some of the fractions the viscosity molecular weight was
only about one-half of the osmotic value. In the absence of any frac-
tionation, the osmotic and viscosity molecular weights would have led to
the entirely erroneous conclusion that the products were approximately
homogeneous.

Conclusions.

Unless an ultracentrifuge is available, absolute molecular weight deter-
minations must be based ultimately on osmotic data. Viscosity measure-
ments furnish a convenient method of interpolation and give reliable
results for homogeneous, linear polymers. The viscosity molecular weight
of a typical unfractionated polymer would not be very seriously in error
unless the polymer were extensively branched. No reliable conclusions
about molecular weight distribution can be drawn from molecular weight
(lata alone, without carrying out a fractionation, although a useful guide
to the homogeneity of a polymer known to be of linear structure is furnished
by the ratio of the viscosity and osmotic molecular weights.

The work on which this paper is based forms part of the programme of
fimdamental research on rubber undertaken by the Board of the British
Rubber Producers’ Research Association.

48 Temn Road,
Welwyn Garden City,
Hertfordshire.

* Details of this work will be published elsewhere.
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