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PurStA formal scheme is presented for describing the electron distribution in the methane molecule, 
theoretical electron density contour maps for the ground state of the molecule are displayed, and various 
aspects of the electronic distribution are discussed. The electronic wavefunctlon employed is an analytical 
form composed of atomic orbitals of s  through g type centered on the carbon nucleus.

The electronic charge density p is expressed as a series of normalized (to 4ir) tetrahedral harmonics 
which are certain symmetrical linear combinations of spherical harmonics of the given I value.

Namely,
47rp(f, e, <p) = S j ^ i ( f )  0 ) ,

where the Ai(r) depend only on r, the radial distance from the carbon nucleus. The functions Ai(r) are 
tabulated, and contour maps of p are developed. The molecular octupole moment is predicted to be about 
1.7Xir"e-cm*.

The distribution of electrons in a single carbon-hydrogen bond is considered from several points of view, 
with the purpose, among others, of elucidating the question of the sign and magnitude of the "CH bond 
moment.”

INTRODUCTION

Th e  shape of a molecule is determined by the dis­
tribution of both nuclear and electronic charges 

within.it. Although the nuclear geometry of most mole­
cules is known, where the electrons are is usually only 
roughly understood. The question of electron locations 
has always been a focal point in theories of valence; 
any full understanding of molecular events, including 
chemical reactions, must be concerned with this.

There is no doubt that accurate quantitative answers 
to precise questions about electronic motions in simple 
molecules will soon become available from pure theory, 
through contemporary advances in methods and tech­
niques for determination of molecular wavefunctions 
by direct solution of the Schrodinger equation. To be 
sure, large scale theoretical predictions of properties of 
molecules of interest to organic chemists are a long 
way off. But some of the concepts useful in discussions 
of properties of organic molecules may be critically 
evaluated in the context of small molecules.

For example, there has been a long-standing discus­
sion concerning the polarity (or lack of it) in a CH 
bond, and one is beginning to obtain reasonably good 
wavefunctions for simple molecules and fragments such 
as CH, CHz, CH», CH4, and CH6+. Perhaps examina­
tion of the details of the electron distributions in such 
species, as given by good wavefunctions for them, could 
help settle the question of the CH bond moment. Cer-
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tainly if the wavefunctions are accurate enough defini­
tive answers can be given to any unambiguous question 
that is asked.

In the present paper, a certain relatively good elec> 
tronic wavefunction for methane'-® is scrutinized for 
its implications about the charge distribution in this 
molecule. Contour maps of the electron charge density 
are displayed and discussed, the electrical moments are 
calculated, and the electron distribution in the mole­
cule relative to that in the separated atoms is exam­
ined. The “CH bond moment” in the molecule also is 
considered.

CHARGE DENSITY

The density of electrons in a molecule (say in elec­
trons per cm*) varies with position in the molecule; in 
methane it may be taken to be a function p of the 
spherical coordinates of a point relative to the carbon 
nucleus, r, 6, <t>, or of Cartesian coordinates X ~ r  sinfl 
COS0 , Y = r  sin0 sin<̂ , Z = r cosff. Figure 1 pictures the 
Cartesian coordinate system chosen.

This density p(r, 6, <l>) is the fraction of the total 
electronic charge present per unit volume (at r, 6, <j>), 
or the probability of finding a unit charge in a unit 
volume (at r, 6, 0) times the total electronic charge. 
If ^ (1 , 2, •••, 10) is the normalized electronic wave­
function for the system, the density p = /j(l)  —p{r, 6, 4>) 
can thus be determined from the formula

, = 10/ / • • • /
Jt Jt Ju

• 'drx ( 1)

‘ A. F. Saturno and R. G. Parr, J. Chem. Phys. 33, 22 (I960). 
In this paper the experimental R , for methane was carelessly 
given as 1,093 A. This is the Rn value; the correct R , value is 
1 085 A or 2.05 atr-see L. S. Bartell, K. Kuchitsu, and R. J. 
deNeui, J. Chem. Phys. 33, 1254 (1960).

* D. M. Bishop, Mol. Phys. 6, 305 (1963).



F i g . 1. The methane molecule. In the coordinate system used 
in the present work, the hydrogen atom at the t ^  of the figure 
has Cartesian coordinates X=^ — S, Y =  — S, Z  =  + S ,  where 
5= /2 /\G  and i?=2.0 oo; its polar coordinates are R, ® =  S4°44', 
^ =  225®. The two planes pictured are the planes for <^= — 45° (the 
larger plane con taming ttie two lower hydrogen atoms) and ip =  
90°, respectively.

A final integration gives the total electronic charge,

10= j^p(l)dTi= j p{r, 9, 0 )rV f i/S 2 . ( 2 )

In determining p from the exact 'J' it makes no differ­
ence what coordinates are used, and it makes no differ­
ence what mathematical functions are used for describ­
ing'!'; the fu-’Ction p as given by Eq. (1) is unique. If 
only an approx m ate'!' is available, the density as com­
puted from Eq. (1) will itself only be approximate.

For the electronic ground state, the diarge density 
p must have the full symmetry of the tetrahedral nu­
clear frame. This means that the function p(r, 6,

T a b l e  I, The totally symmetric tetrahedral harmonics

I Harmonic

0 1
1 none
2 none
3 (105)»*ys
4 (5/4) (21)*[**-hy-H**-(j)]

5 none
6 (231/8) (26)* (1/22) lx*+y*+Z*

7 (11/4) (1365)M *y2C**+/+2«-(5/11)]}

* T he hannonics ar« functions which belong to  th e  to ta lly  sym m etric
rep resen ta tio n  of th e  te trah ed ra l g roup  7'^. Those listed  here n a y  be found in 
D . G . Bell, R ev. M od. P hys. 36, 311 (1954).

** H ere  *— sin® co s^ , y «  sinff a in ^ , *■  coaO.
* T hese functions sa tisfy  th e  orthonom aliaatioa conditions o f E q . (4) of the 

tex t.
^  See Figs. 4 and  5 for graphs of these functions.

if linearly expanded in terms of functions classified by 
their behavior under the symmetry operations of a 
regular tetrahedron contains only functions which are 
unaffected by these symmetry operations. A complete 
set of such functions in the angular variables 6 and (t> 
is provided by the totally symmetric tetrahedral har­
monics Ti{6, the first several of which are listed 
in Table I. Each of these functions may be compounded 
from surface harmonics Ybn(d, 4>) of the given I value.

T a b l e  II. T h e  radial distribution functions .4i(f).*“'*

r ^o(r) A iir) - A t ( r ) A t(r)

0.0 CO 0
0.1 48 0946 600 19 0
0.2 15 4028 256 559 2
0.3 5 0691 637 3 454 41 0
0.4 1 8081 392 11 497 290 1
O.S 7959 009 27 415 1 170 7
0.6 4888 672 52 995 3 333 39
0.7 3944 420 8 8  505 7 464 156
0 . 8 3581 857 132 495 14 028 471
0.9 3339 494 181 990 23 068 1 144
1.0 3096 466 233 007 34 151 2 336
1.2 2560 004 322 734 58 844 6 571
1.4 2022 192 374 553 79 686 12 467
1.6 1545 769 378 831 90 087 17 70S
1.8 1152 684 343 209 88 338 20 134
2.0 842 207 284 259 77 153 19 205
2.2 604 582 218 671 61 223 15 889
2.4 427 432 158 236 44 843 11 689
2.6 298 389 108 839 30 712 7 795
2.8 206 247 71 780 19 879 4 783
3.0 141 515 45 725 12 269 2 733
3.4 65 706 17 125 4 166 748
3.8 30 208 5 945 1 256 169
4.2 13 819 1 964 346 33
4.6 6 300 837 125 9
5.0 2 863 196 21 1
5.4 1 297 60 5 0
5.8 585 18 1 0
6.2 263 5 0 0
6.6 118 2 0 0
7.0 53 0 0
7.4 23 0
7.8 10 0
8.2 5

‘  See te x t and  E q . (3) for definition of A iW ).
** T ab u la ted  a re  values of A i ( r ) y .W  in  electrons p e r as*, ca lcu la ted  as de­

scribed in  A ppendix I.
* T h e  d istance r  is in  oe un its. T he p ro tons are  located a t  r» 2 .0 .

See F igs. 2 and 3 fo r grapha of these functions.

In terms of them, one may accurately write

47Tp(r, B, >f) = ^ A i{ r )T i{ e ,  0 ). 
i-o

The orthonormalization conditions on the Tj are

Tiid, 4f)Tii{6, 4>)dU=^bu>.I '

(3)

(4)

The 1=1, 2, and 5 terms in the expansion are missing 
because there are no totally symmetric tetrahedral har­
monics for these values of I.

The electronic diarge density is completely charac­
terized by the functions A i(r). The exact wavefunction



F i g . 2. The sphericaUy 
symmetrical part of the 
electron dcDsity in meth­
ane. Plotted is the radial 
distribution function
r*Ao(r), where 4o(r) is de­
fined by Eq. (3) of the text. 
The area under the curve is 
10, the total electronic 
charge. The broken vertical 
line marks the location of 
the hydrogen atoms.
Atomic units.

defines the exact A j ( r ) ; an approximate wavefunction 
will give functions Ai{r) differing more or less from 
the exact.

In Table I I  are given the functions Ai{r) through 
i = 6, as calculated from the wavefunction for methane 
previously determined in this laboratory. This wave­
function in absolute terms may be described as quite 
a good one. (See the discussion in Ref. 1.) The func­
tions A i(r)  in Table I I  should be reasonably close to

the true ones, with Asir) the least in error and the 
error increasing with I. Values for A j(r) are not listed 
in the table, because significant contributions to Ai 
are missing in the wavefunction employed.

The calculation of the A j(r) from the selected wave­
function is straightforward; details are given in Ap­
pendix I.

In Figs. 2-5, the individual A j(r) and Ti{Q, <t>) are 
presented graphically. In Fig. 2 is plotted r*Ao{r),

Fig. 3. The radial distri­
bution functions A i{r)  for 
methane. Plotted are the 
quantities determining the 
nonspherically symmetric 
components of the electron 
density, as defined in Ex). 
(3) of the text. A t{r)  and 
A tir )  are positive, i44(r) is 
negative. Atomic units.

0 -4 -
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the radial charge density function for the ^=0 spheri­
cally symmetric term. As would be expected, this is 
a neonlike charge density. The integral under this 
curve, by Eqs. (2) and (4), is simply the total elec­
tronic charge, 10.

In Fig. 3, Az{r), A i{r), and ^#(f) are plotted. In 
Figs. 4 and 5 are illustrated the corresponding func­
tions Ts{d, 0 ), Ti{6, <t>), and Ti{6, ^ ) ,  for the two 
planes ^ = —45° and ^= 90° depicted in Fig. 1. These 
graphs show the nature of the l>  0 contributions to p. 
Successive terms when superposed upon Ao concen-

Fio. 4. T^rahedral harmonics in a plane containing two hydro- 
atoms. Plotted radially are the values of the harmonics T i(0 , 

 ̂ functions of ff, for <6 =
-4 3  . Ihe hydrogen atoms are located in the lower half of the 
plane at the angles marked with dotted lines

F i g . 5. Tetrahedral harmonics in a plane not containing hy- 
^ogen atoms. Plotted radially are the values of the harmonics 

of Eq. (3) and Table I  of the text, as fimctions of ff, for 
^ = 90  . Ts is identically zero on the plane, from which all of the 
hydrogen atQms are equidistant.



F ig . 6. Contour map of the electron 
density in methane on a plane containing 
two H atoms. Plotted are contours of 
4ffp, as calculated from Eq. (A ll) of the 
text, for the 45° plane of Fig. 1. 
Atomic units.

tra te  the electrons in CH bonds, and subtract some 
charge from regions between CH bonds, as shbuld be 
expected. The net effect of superposing all the terms 
is a charge density having tetrahedral shape.

A contour map of the electron density is shown in 
Fig. 6 for the planes 0 =  —45® which contains two hy­
drogen atoms. The corresponding contours for 0=90° 
are remarkably more nearly circular.

MULTIPOLE MOMENTS

The 2*-pole scalar electric moment associated with 
a distribution of charge SJ having tetrahedral symme-

T a b l e  III. Electric raultipole moments of methane.*

Moment**
1

Nuclear
contribution®

Electronic
contribution

Total

Charge (i= 0) + 10 -1 0 0
Dipole moment (1=1) 0 0 0

Quadrupole moment 
( i - 2 ) 0 0 0

Octupole moment (̂  =  3) +23.85 -1 1 .0 0 +  12.85d

Hexadecapole moment 
(/=4) -3 6 .9 5 + 5 .6 6 -3 1 .2 9

* Alt values in atomic units: unit of charge e, unit of length at.
 ̂M oments u  defined by Eq. (5) o f tbe text.

* From Eq. (6) of text, with X=2a».
See text for discussion and comparison with experimental values.

try  may be defined by the formula,*-^

(2/4-1)-^J r ‘Ti(B, e, (t>)r^drdn. (5)

For the nuclear frame in methane, this gives*

/j,n u o le« =  _|_ lO g, /jn u c le a r=  /^ n u c le a r -  Q,

| ( 20)iei2a, (&)

where R  is the CH distance. For the electrons, on the 
other hand, one finds, from Eqs. (3) to (5),

J A (7)

These quantities may be obtained by numerical or 
analytical integration of the functions A i(r)  of Table 
II; results of doing this are summarized in Table III.

The theoretically computed octupole moment, 
+12.9eoo*, agrees with the best “experimental” value 
available at the present time. Cole’s estimated 9.2— 
18.5eoo*.̂  The present cakxilation puts the next mo­
ment, the hexadecapole, a t about —SOeoo*-, apparently

* H. M. James and T. A. Keenan, J. Chem. Phys. 31, 12 (1959). 
♦ J .  O . H ir s c h fe ld e r , C . F . C u r t is s , a n d  R .  B . B ir d , Molecular

Theory oj Gases and Uquids (John Wiley & Sons, Inc., New York, 
1954), pp. 839 ff.

*D. R. Johnston, G. J. Oudemans, and R. H. Cole, J. Chem.
Phys. 33, 1310 (1960).



F ig . 7. Contour difference map for 
methane versus the separated atoms. 
Plotted are contours of 4t[p(CH<) — 
p (C + 4 H )], determined as described in 
the text, for the <i>= —45® plane of Fig. 1 
that contains two hydrogen atoms. Re­
gions labeled +  have a greater electron 
density to the molecule. Atomic units. 
For fresh insight, invert.

here is no experimental information bearing on this 
moment.®

CHARGE DENSITY IN THE CH BOND REGION

Figure 6 clearly shows the tetrahedral character of 
the diarge density. I t  reveals no large concentration 
of electron density in the CH bond region, however, 
but rather a general diffuseness. Thus the relative par­
ticipation in bonding of the hydrogen atoms and the 
carbon atom is obscured, and from Fig. 6 alone it is 
not possible to ascertain whether there has been a net 
transfer of charge from carbon to hydrogen or the re­
verse.

To answer this question, one might compare the 
CH* electron density with the density that would ob­
tain for a system of four normal hydrogen atoms tetra- 
hedrally located at a distance 2ao from a carbon atom 
in its Viisxyz) valence state. This is done in Fig. 7, 
which is a difference contour map for the molecule 
CH4 versus the atomic system C +4H . The hydrogen 
densities here merely are densities for U orbitals on
H, charge 1; the carbon density is that associated with 
an approximate wavefunction of the usual form for 
the valence state, constructed from Slater orbitals

* One could argue that one should not quote the moments 
calculated from the best wavefunction for methane in Ref. 2, but 
one rather should extrapolate the results obtained from succes­
sively better and better wavefunctions. Moments obtained in 
this way would be somewhat different.

tipp with «,=0.98619, f,=S.58706, w /= 2 .08511 
r / =  1.69733, n^=  1.77873, tp=  1.38924.^-»

The implication of Fig. 7 is that in the formation of 
methane from carbon and hydrogen atoms consider­
able electronic charge is drawn from the carbon atom 
into the CH bonds. Charge apparently also is removed 
from the protons and placed in the bonds. Further, if 
one visualizes the molecule inscribed in a cube, the 
four corners not occupied by protons have had a small 
amount of charge removed from them. There is a 
slight build up of electron density between adjacent 
protons, and some extra charge also appears in distant 
reaches of the molecule.

The foregoing considerations give a qualitative de­
description of the electron distribution in methane and 
the charge drift that occurs in the formation of meth­
ane from the separated atoms, but a quantitative meas­
ure of the transfer of charge is still lacking.

To condense the information contained in the elec­
tron density maps into a simple quantitative descrip­
tion, one may construct simple one or two parameter 
electrostatic models for the molecule, which preserve 
the salient features of its charge distribution. In Table

’’ For the procedure for setting up the valence state wavefunc­
tion, see W. Moffitt, Rept. Progr. Phys. 17, 173 (1954).

* These parameters minimize the energy of the valence state 
wavefunction, giving —37.3408 a.u. for it.

* The molecular wavefunction actually employed in the prepara­
tion of F ip. 6 and 7 differed very slightly from the wavefunction 
in Ref. 2.



IV are presented several such models. Each of these 
models has been chosen to fit the calculated octupole 
moment of methane as given in Table I I I j  Models (4) 
and (5) have been made to fit the calculated hexa- 
decapole moment as well.

A somewhat different way of approaching the prob­
lem of the distribution of charge in a CH bond is to 
allocate the nuclear and electronic charges to the four 
bonds in some way, and to compute the dipole mo­
ment of a typical resultant fourth of the total charge 
distribution. One can do this by dividing space into 
four equivalent regions, each containing one hydrogen 
atom. The appropriate quarter-space, called a tetrant, 
is a three-sided pyramidal section; one is pictured in 
Fig. 8. After appropriate quadratures, which require 
the values of certain integrals of tetrahedral harmonics 
over a tetrant that are discussed and tabulated in Ap­
pendix II , one finds that the center of gravity of the 
2 \  electrons belonging to one tetrant lies a t a distance
1.413oo along the CH bond from C. The corresponding 
center of gravity of one fourth of the positive charge 
lies a t O.SOflo. The net over-all moment of the tetrant 
is f(1.41—0.80) =  1.53eao=3.89 D.*® This figure is not 
even close to the commonly quoted value of ~0.5  D 
for the “CH bond moment.”

DISCUSSION

I t  is evident that the concept of the CH bond mo­
ment in a molecule such as methane is elusive, illusive, 
and ill-defined i it should be discvissed only in a specified 
context on a particular operationally defined meaning.

Whether or not there is a pileup of charge right on 
the protons in CH< relative to C-f4H is not settled by 
the present calculations. They indeed do imply a de­
ficiency of electrons a t each H, more than compen­
sated by an excess of electrons in the total vicinity of 
each H. But it is in the very immediate neighborhood 
of an H that the present method of calculation is 
worst. And on general grounds one might expect a 
contraction of the electron cloud about each H due to 
“ cluster promotion” .^ So this point should be investi­
gated further.

Another way to look a t the bond moment would be 
to examine the contributions to the moment of indi­
vidual equivalent orbitals,”  obtained from the natural 
spin orbitals for the molecule by a symmetry trans­
formation to a localized orbital set.^*

Concerning the octupole and hexadecapole moments 
of methane given in Table III, both of these are prob­
ably numerically too large. A careful, though neces-

“ This may be compared with the value quoted by C- A, Coul- 
son, 4.06 D, in temarks presented at the Shelter Island Conference

“ K. Ruedenberg, Rev. Mod. Phys. 34, 326 (1962). However, 
although the charge may be more clustered about H in CH4 than 
in C-t-4 H, the net charge at H may be less in CH<.

“ For example, P.-O. Lowdin and H. ShuU, Phys. Rev. 101,

*^ ^F oiSm pIe, W. C. Hamilton, J. Chem. Phys. 26, 345 (1957).

T a b l e  IV. Simple electrostatic models for methane.

Remarks^’
Model Parameter values* hexa-

octupole decapole 
d  q n moment moment

(1) Point charges: 
q at each H, 
—45 at C

2.00 0.547 ... 12.85 - 20.21

(2) Point dipoles: 
M at each H

2.00 ... 0.92 12.85 -2 6 .6 0

(3) Point dipoles: 
^ at each CH 
bond center

1.00 • « • 3.65 12.85 -1 3 .2 7

(4) Point charges: 
g at d, —4g at 
C

3.14 0.139 » • • 13.85 -3 1 .2 9

(5) Point dipoles: 
 ̂at i

2.36 ... 0.66 12.85 -3 1 .2 9

(6) Point charges: 
-1-1 at each H, 
-1-4 at C, - 2  
at d.

1.23 - 2.00 12.85 -2 6 .4 3

* T he param eter d is th e  distance (in  at units) a lone th e  CH  bond axes, m eas­
ured  from  C, of four elem entary  charges q (in  un its  o f e) o r poin t dipoles M (in  
Deb 3̂  un its). Positive 9 m eans n e t positive charge a t positive  ̂  m eans dipole 
w ith  th e  sense a t  d.

^ C alculated to ta l octupole m om ent 12.85 a .u ., hexadecapole m om ent —31.29. 
Values in boldface were used to  determ ine the param eters (See T able I I I ) .

sarily subjective, consideration of the term-by-term 
buildup of the quantities that have been calculated in 
the table suggests that if the calculation of the wave- 
function were carried to higher accuracy,'^ the octupole 
moment would tend to a value near 12 a.u. or 1.7X 
10"^e*cm®, and the hexadecapole moment to a value 
near — 25 a.u.

In summary, the most perspicuous description of 
the charge distribution in methane seems to be pro­
vided by comparison of it with the charge distribution 
in the separated atoms, Fig. 7. As a simple model. 
Model (6) of Table IV seems best. If one wants to 
talk about a CH bond moment, one must take care 
to define the concept. I t  is notable that 0.5 D quoted 
for this quantity is not comparable with any number 
that has been here computed.’®

APPENDIX I. ANALYSIS OF THE CHARGE DENSITY

The electronic wavefunction selected for methane 
has the one-center form'’*

’4'=Ci$l+C2^2+Ca^+C44>4+C6'^, (Al)

where the C* are numerical coefficients and each is 
a certain linear combination of the Slater determinants 
built from atomic orbitals on the carbon nucleus.

“ M. Krauss, J. Chem. Phys. 38, 564 (1963).
“ Very recent papers that shed further light on the questwns 

here discussed include the following: J. T. Sinw, J. C h ^ . Ph^. 
39, 1575 (1963); W. T. King, J. Chem. Phys. 39, 2141 (1963) ; 
E L Albasiny and J. R. A. Cooper, Proc. Phys. Soc. (London) 
82, 289 (1963).



Namely, in a standard notation,

<i>l= {888*8*pxV*PvVvPtV»)y
^ = ( r ^ [ _ { 8 S 8 * l* p J 3 ^ x p y p y p , 'P M ) - \ - S  other determinants],

4*3“  ' ^ ~ ^ \_ { ,^ S ^ x u tP x p x P y P v P tp ^ '^ ( .& S jx y ^ * P * P x p y V y p tP ^  

# 4=  6-i[(«SS*S*/»*/*(6**-«)/>»Pv/>,P,)
+ 5  O th e r  d e t e r m i n a n t s ] ,

$6=6-»n(sSs*sV4i/*(7*“-i)^i/Pv^-P.)
+ 5  other determinants], (A2)

Here each term enclosed in parentheses is a nor­
malized 10X10 determinant made up from the indi­
cated atomic orbitals, with spin function ^  or spin 
function a  according as there is or is not a bar over 
the orbital symbol. The Slater atomic orbitals,
J ,  ^  [ [^ * =  (5 5 i ) / ( l  *S®)^], Px, P]/, ptj dyzf fxyzi
fz(Bx*-th SvtUx'-ih etc., each have a characteristic prin­
cipal quantum number n and orbital exponent a 
typical orbital has the radial part exp(—fr),
where 4̂ is a normalizing constant. The five (four 
independent) linear coefficients C<, the seven different 
parameters n, and the seven different parameters 
all have been determined by the variational method, 
for an assumed carbon-hydrogen distance of 2.0 a.u.

The charge density a t a point (r, 6, <t>) is given by 
Eq. (1) of the text. With th e ’5' of Eq. (A l), this may 
be written

14
p ( f ,  0 , =  (A 3 )

3 -1
where
^ = j ( l ) 5 ( l ) ,
^ = j* ( l ) ^ * ( l ) ,

^3=?*2(1)+/>„H 1)+P.ni),
V 4=rf./(l)+rf«*(l)-frf„/C l),
^6=/*i/*®Cl) ,

=/* (6*®-8 (1) + /V (Sv®-8)® (1) + / 1 (1) ,

< P i ^ P x { l ) d U ^ ) - \ - p M d x M + P , { l ) d x y { l ) ,

<PlO =  p x { i ) f x (6*®-S) ( 1 )  ( 1  ) f y ( 1 )

<Pll = px(l) gyz ( 1) +py ( 1) g*,<7„*-I) C 1)

<(>n=dyt(l)f^<5**-8) (1) +(/**(1 )/v(6v*-a)(1)

“1 " ^  (1 )/< C6**-3) (1) , 
< P lS = d „ ,( l )  (  1)  -k -d x t  ( 1) ( 1)

-\-dxy( I )g x y ( 1) ,

<Pl4=/r(5**-3) ( l ) f v ,a * * - D  ( 1 )  + /» -(6b*-«) ( l)g ,.(7 v * -D  ( 1 )

+/*C6**-a)(l)giy(7a*-l)(l), (A4)

and
P j=2C i®+2C2*+2Cs2+2C4*+2Cs'= 2 ,

Z?2= 2 -  Z>8= 2 -  i  (Cs,^+C42+C6=') ,

A = C bS Z?6=iC4^

A = J C 6̂  A = IC 6)*CiC2, Di=2{2)iCiCi,

i^io=f (6)*CiC4, J5u=|(6)*CiCi, Dn=^C2Ci,

D,z = K 2 Q , A4=|C4C6. (A5)

Each of the <pj may be expressed as a function of r
only, Ri(r) (except for ^  and ^  this is the product
of the normalized radial parts of two orbitals), times 
a function of 6 and <f> only, Zj(6, ^ )/4 ir (this is a prod­
uct or sum of products of the normalized angular parts 
of two orbitals):

= ^ )/4 ir]. (A6)
Thus

14

where

4rp(r, 6, <f>) = ^ B i( r )Z j(6 ,  « )̂, (A7)

(A8)

A more compact form for p is obtained if use is made 
of the fact that it must be totally symmetric under all 
operations of the tetrahedral group. This means that 
the functions Z,(d, <l>) which enter Eq. (A7) must be 
expressible as linear combinations of the totally sym­
metric tetrahedral harmonics Ti{d, <t>) given in Table I 
of the text. In terms of these one has

Z 4 = 3 ro -

Zi= To, 

2 (21)*

Z i— To Z i—3T(i

Ti,
^  ^  2(21)*^ , 20(26)*^ 

Z ft— i  0-------  — 1 4i — Cl
11 143

11 143

,  _  27(21)* . 15(26)*^
Z 7— o i o --------   i 4 T  TTZ— i e ,77 143

Z i—Tg, Zio=27'4,

-------Z— 8, Z 12— —27’g,

.  30(7)* , 30(78)*^
Z u -------- — T7T~u ,77 143

11

If these relations are written
143 (A9)

(A lO )



D I S T R I B U T I O N  O F  E L E C T R O N S  I N  M E T H A N E  

Table V. Values of certain integrals U {p, q, r).*-**

5 - 0 1 2 3 4 5 6 7 8

r = 0 ,  p=*0 261 799 54 942 16 825 6086 2422 1025 454 207 97
1 120 150 27 189 8652 3202 1294 554 247 114 54
2 61 483 14 288 4623 1731 705 304 136 63 30
3 33 427 7809 2540 955 391 169 76 35 17
4 18 903 4389 1425 536 219 95 43 20 9
5 10 993 2520 813 304 124 54 24 11 5
6 6530 1472 470 175 71 31 14 6 3
7 3945 872 275 102 41 18 8 4 2
8 2416 523 163 60 24 10 5 2 1

r“ l ,  ^ ““0 217 605 96 225 48 034 25 660 14 323 8248 4862 2919 1779
1 43 252 20 833 10 740 5787 3218 1832 1064 627 374
2 12 735 6415 3376 1833 1019 577 332 193 114
3 4471 2315 1236 675 376 212 121 70 41
4 1738 916 494 272 151 85 49 28 16
5 722 386 210 116 65 36 21 12 7
6 314 170 93 51 29 16 9 5 3
7 142 77 42 24 13 7 4 2 1
8 66 36 20 11 6 4 2 1 1

* See te s t  and £ q . (A l9) f<» d«fiaitk»a of V0 , 9, r)> 
^ Tabulated are values of V( ,̂ 9, r)X10‘.

then Eq. (A7) becomes

=  ( A l l )
Iml

where

A iir) = ^ A i iB i ( r ) .  (A12)

Equation (A ll)  is the final working formula for the 
electron density, Eq. (3) of the text.

As examples of Eq. (A12), the first two nonvanish-

Fig. 8. A tetraot. Pictured is the equilateral spherical triangle of 
area x  associated with a typical hydrogen atom, the second from 
the top in Fig. 1.

ing ^ i ( r )  are given by the formulas,

Ao(r) =  2Ri{r) + 2 & (r)  + 6J?3(r) + « [ i ? . ( r )  -  f t ( r ) ]

) -  &(f) ]+C.TJ?,(r) -  2?,(f) ]

+ C s T A ( f ) - i ? s ( r ) ]  ( A 1 3 )

and

At(r)=Hi^)iC^C2Ri{r)-\-2{2)iCiCzRs(r) 

■ h im )K iC ,R n (r )  -iC2C,Ri2(r)

-A(3)>C4C6J?M(r). (A14)

APPENDIX n .  CERTAIN INTEGRALS OVER THE  
UNIT SPHERE

Two groups of integrals were needed for the present 
work, integrals over all or part of the unit sphere of 
various powers of the Cartesian coordinates of a point 
on the unit sphere.

*=sin0cos^, ys'sin^sin^, 2=cos0. (A15)

The integrals are

S(p , g , r ) = f  f  (A16)
■' •'w ho le q d ie n

and

T { p ,q ,r )=  f  f  (A17)
•'one te tr s n t

where “one tetrant” is the quarter sphere associated 
with the proton located a t x = y —z= l/(3 )^ ,  that is, 
the spherical triangle of area ir bounded by great circles, 
x=  —2, y=  ~ x ,  and z= —x, as shown in Fig. 8.

The integrals of Eq. (A16) are elementary; they are



given by the formula

S(p , q, r)

0 if 9) and r are not all even,
(A18)

2 r ( |^ + i) r (^ g + i) r (^ f+ 4 ) /r ( |/> - f |9 + ^ » '+ f )

if p, q, and r are all even,

where r (« )  is the gamma function of «. For example, 
5(0, 0, 0 ) = 2 [ r ( i ) ] » / r ( f )  =  2[T4]V[l/2T4]=4r, the 
area of the unit sphere. These integrals are useful for 
the verification of the orthonormalization conditions, 
Eq. (4) of the text, for the tetrahedral harmonics listed 
in Table I.

The integrals over the individual tetrant are more 
diflScult. These may be compounded from individual 
integrals over tV of the unit sphere,

U(p, q, r)= I  I

r l / ( S ) *  r
=  /  yody / (A19)

Namely,

P, r ) ^ V { r ,  p, $ )]

+ D + ( - l ) a C ^ ( A  q, r)-\-U(r, q, ^ ) ]

+ C l+ ( - l ) - lC ^ ( ^ .  ^  q)+ U (q, r, />)]. (A20)

The integrals U(p, q, r), for p and q having values 
from 0 to 8 and r having the values 0 and 1, are given 
in Table V.

Calculation of the U (/>, q, r) may be accomplished 
making use of the following recursion scheme. Any

U{p, q, r) first may be expressed in terms of the 
U(p, q, 0) or the u (p , q, 1) using

U{p, q, r) = U{p, q, r ~ 2 ) -U { p + 2 ,  q, r - 2 )

- U i p ,q + 2 , r - 2 ) .  (A21)

The integrals U{p, q, 1) can be obtained from the 
formula

U(p, q, 1) =  ( i)  l ? + l )
(A22)

where

»)= f  
•'0

is an incomplete beta function of the indicated argu­
ments. Finally the integrals U(p, q, 0) can be obtained 
from the formula

U(p, q, 0 )= p ~ H ^)^^

+ L ( p - ^ ) / p i m p - 2 ,  q, Q ) - U ip - 2 ,  9+ 2, 0)},

(A23)

and values of V{0, q, 0) and U (i, q ,0 );  these last are 
foimd by Weddle’s rule numerical integration proce­
dures.

The relationship between the integrals S(p , q, r) 
and the integrals T{p, q, r) is

2S(p , q, r ) = [ l + ( - l ) ' ’] [ l  +  ( - l ) ’]

[ l  +  C - l ) '] r ( / . , g , r ) .  (A24)

Thus, from Table V and Eqs. (A20) and (A24), ^(O, 
0, 0) =  161^(0, 0, 0) and 5(0, 0, 0)=48C/(0, 0, 0) =  
48(0.261799) =  12.566=47r.




