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Foreword
In the preparation of this British Standard, under the 
authority of the Rubber Industry Standards Committee, 
use has been made of the guidance given in BS 2987 'Notes 
on the application of statistics to paper testing'.
The problems of sampling and the reliability of results 
obtained in rubber testing are clearly cases for the appli­
cation of statistical methods, and in recent years a number 
of papers have been published indicating the growing 
interest in statistical methods in the rubber industry.
The results of rubber tests are usually subject to appreciable 
variation, due not only to experimental error, but also 
to variation in the raw materials and to the operation 
of many unknown or random factors in the manufacturing 
process. The interpretation of test results therefore requires 
some care and the chief value of statistical methods in this 
connection lies in their ability to replace purely subjective 
judgements of the data by objective criteria such as the 
tests described in the text. Statistical analysis of the data 
cannot add to the accuracy of an experiment by turning 
an uncertain result into a certainty, but it can enable the 
conclusions to be expressed more precisely in terms of 
a definite probability. Neither can statistical analysis 
be used to obtain meaningful results from experiments 
designed without reference to underlying statistical 
principles.
Although statistical methods have their foundation in 
mathematical theories of probability, a knowledge of such 
theories is not required for the successful application 
of these methods. Only straightforward arithmetical pro­
cesses are involved and, in many cases, the calculation does 
not require the use of a machine. One or two shortcut 
methods of simplifying calculations are given.
The purpose o f the present guide is to give only a brief 
outline o f  the subject, bu t w ith sufficient detail to enable

the reader to carry ou t the simpler statistical calculations 
on his test data, such as those fo r ascertaining the precision 
o f test means and the signficance o f differences in test 
means (a lis t o f formulae fo r easy reference is given in 
appendix A). For the more advanced techniques, such 
as detailed application o f  analysis o f  variance, which can 
be o f great u tility  fo r the comparison o f  instruments, for 
compounding investigations and fo r the analysis o f causes 
o f variation in test readings, reference should be made 
to appropriate textbooks (see appendix B).
A secondary purpose of this guide is to secure greater 
uniformity in the presentation of test results and in the 
use of statistical terms and symbols (see clause 4 and 
glossary, appendix C).
The problems of sampling depend too much on particular 
conditions (such as manufacture and storage) to be capable 
of detailed treatment in this standard. Consideration has 
been given to these matters in the preparation of BS 1673 
'Method of testing raw rubber and unvulcanized com­
pounded rubber': Part 1 'Sampling' and the subject is given 
an extensive general treatment in BS 5309 'Sampling 
chemical products': Part 1 'Introduction and general 
principles' and Part 4 'Sampling of solids'.
In preparing this guide account has been taken of the work 
of Technical Committee TC 69, Applications of statistical 
methods, of the International Organization for Standard­
ization (ISO). Attention has been particularly directed 
to ensure the correspondence of the definitions for 
statistical terms given In this guide with those approved 
by TC 69 and published in ISO/R 646. 'Statistical 
vocabulary and symbols. First series of terms and symbols'.: 
Part 1 'Statistical vocabulary' and ISO/R 1786 'Statistical 
vocabulary and symbols. Second series of terms and 
symbols'.



British Standard Guide to
Application of statistics to rubber testing

Section one. General
1. Scope
This standard has two purposes. One is to arouse the 
interest of persons engaged in rubber testing in the use 
of statistical nnethods, the other is to provide an easy source 
of reference to the formulae required for the treatment 
of data, so as to satisfy the general reporting clauses included 
in nnost of the rubber testing methods. It is complementary 
to the British Standards on the testing of rubber.
This standard is not intended to be used for quality control 
purposes. That subject is dealt with in BS 600 and BS 2564.

2. References
The titles of the British Standards referred to in this 
standard are listed on the inside back cover.

Section two. General principles

3. A practical problem from rubber testing
Imagine that a rubber manufacturer is accustomed 
to supplying a certain type of rubber A for a particular 
job. He knows from experience over a long period of time 
that this material is of satisfactory modulus, but recently 
he has developed rubbers B, C and D at an attractive cost 
per kilogram. As a safeguard against complaints, he decides 
to test the rubbers before attempting to pass them on to his 
customers. He carries out tensile tests, ten for each rubber 
(because he knows how misleading three results can be), 
under comparable conditions and gets the following results. 
Modulus at 300 % elongation (MPa)

A B C 0

19.1 19.1 1 8 .4 2 1 .9
1 8 .3 1 9 .2 2 3 .8 2 0 .2
1 7 .6 2 0 .6 2 1 .0 1 7 .5
2 1 .7 1 9 .2 1 7 .0 1 6 .6
1 7 .7 1 8 .7 2 5 .0 1 1 .5
2 0 .7 2 3 .3 18 .4 2 1 .8
1 9 .7 2 2 .0 2 7 .5 2 0 .5
1 9 .3 2 1 .8 2 7 .5 1 8 .4
1 6 .3 1 8 .0 2 0 .0 1 8 .8
2 0 .0 1 9 .0 2 3 .0 1 8 .2

The purpose of these tests is to show up differences of 
modulus of the four rubbers, and probably the first thing 
the manufacturer will do with the figures is to runtiis eye 
up and down the columns. This may be sufficient to answer 
the questions, but, if the figures are difficult to compare, 
he will calculate the means or average values of the sets 
of ten results.

M ean

A

1 9 .0 4

B

2 0 .0 9

C

2 2 .1 6

D

1 8 .6 4

In doing this, although he perhaps neither knows nor 
cares, he has applied statistical methods of analysis to the 
sets of figures. He has deduced a derived quantity or 
statistic which gives information in a succinct form about 
the readings.

What do these mean values te ll him? One person may 
conclude from the four means that rubbers B and C are 
of higher modulus than A and rubber D is of lower modulus. 
Another may be more cautious. He knows that any test 
on rubber is subject to considerable variability {that is why 
he has done ten tests instead of one) and there is therefore 
some uncertainty about the mean values. He may conclude 
that, since the test average of C is 16 % higher than that 
of A, C is of appreciably higher modulus, and B possibly 
of higher modulus than A. The result for D is about 3 % 
lower and, although he may have doubts about the signifi­
cance of this result, he will perhaps reject rubber D, just 
to be on the safe side.
The mean value is not enough. The variability of the 
readings has to be considered. In the unrealistic case where 
all ten readings on rubber A happened to be 19.04 and those 
on B 20.09 it could be confidently asserted that B is of 
higher modulus than A. In practice, some variability is to 
be expected, and the greater this is the more doubtful does 
the conclusion become. As the variability increases further, 
it becomes obvious that there Is no reliable evidence of 
a difference of modulus between the two rubbers.
Ways o f assessing variability. A rough impression can 
be obtained by running over the figures by eye, but con­
clusions drawn from this procedure are subjective. If the 
variability has to be expressed in a report the highest and 
lowest values can be used, or the range, but again the 
interpretation of these statements is open to doubt. The 
mean deviation (see glossary, appendix C) is a better 
expression of variability, but it is of limited usefulness.
The most satisfactory and efficient way of expressing 
variability is by means of the standard deviation, because 
it remains more constant than any other measure in repeated 
sets of figures. The range, for example, may vary relatively 
more than the standard deviation from one set of readings 
to another because it depends only on the two extreme 
values in each set. The standard deviation is more difficult 
to calculate than the range or mean deviation, but this 
is more than compensated by its versatility. It is fundamental 
to statistical analysis.
The coefficient of variation is closely related. It is the 
standard deviation expressed as a percentage of the mean 
value. It has the useful property of typifying a material 
where the standard deviation increases in proportion to the 
mean value. Under these circumstances the coefficient 
of variation is constant. This is often the case in rubber 
testing.
The test portion itse lf is another variable. Only a small part 
of the consignment of rubber A was tested and this test 
portion has^een assumed to be representative of the rubber 
as a whole. If another test portion were to be tested, it is 
likely that a different mean value of tensile modulus would 
be obtained and this might lead to different conclusions. 
When a large series of similar test portions is tested, how­
ever, a definite pattern begins to arise. As more and more 
test portion means are taken, the pattern of the distribution 
of these means will more closely approach a smooth curve.



On the basis of this phenomenon, statements may be made 
about a single test portion which take account of their 
variability.
Why use statistics in rubber testing? In certain simple 
situations, conclusions may be reached without any 
reasonable doubt. It should be recognized, however, that 
personal judgement often plays a large part in arriving 
at a decision. This may be tempered by experience but, 
unless statistical methods are used, at least one guess 
is involved.
Statistics eliminates the guesses. I nstead of a forthright 
statement that the tensile modulus of rubber A is 19.04 MPa 
(which may be proved wrong by the next sample tested), 
a conclusion firmly based on statistics might be 'that it is 
95 % certain that the true tensile modulus of rubber A lies 
between 18.05 and 20.03 MPa'.
The question whether it is worthwhile to employ statistics 
in a particular problem depends entirely upon the import­
ance of the answer. If the most objective conclusion is 
sought, for scientific or commercial reasor»s, then statistical 
methods should be considered.

4. Introduction to statistical methods
4.1 Distribution of results. A collection of values (for 
example, individual test results) relating to a specific 
property of the material being tested tends to arrange itself 
about the arithmetic mean in a manner which may be rep­
resented by a distribution curve (such as that illustrated 
in figure 1). When, as is often the case, the distribution 
of a large number of values approximates to a particular 
mathematical law, known as the Normal (Gaussian) 
distribution, a number of useful calculations can be made, 
e.g. of the proportion of test readings likely to differ by 
more than a given amount from the arithmetic mean (see 
appendix D, table 11 and figure 12).

Reading

F ig u re  1. N o rm a l d is t r ib u t io n  cu rv e

Statistical tests are available to test for«he departure from 
normality for a distribution, and details of some of these, 
together with the appropriate tables, can be found in 
Biometrika tabldi fo r statisticians (see appendix B, ref. 18) 
pages 61 to 63 and 183 to 184.
In some cases (such as in the Akron abrasion test) the 
distribution may be found to be markedly asymmetrical 
and to depart appreciably from the Normal form but, 
even in such cases, the distribution can often be converted 
into an approximately Normal form by a simple trans­
formation of the readings, for example, by conversion

of each reading to its logarithm (which has been found 
effective in the Akron abrasion test). Other simple trans­
formations which have sometimes proved effective with 
experimental data are the square root or the reciprocal 
of the readings.
Even where the Normal distribution is not found for the 
individual readings, the distribution of the means of small 
groups of readings {>  3), such as compose the usual tests 
on rubber, nearly always approximates to the Normal form.

4.2 Sampling from a population. A set of data obtained
in any single investigation can be regarded as a sample from 
a much larger collection, or population, of results, to which 
the given data belong. For example, the population might 
consist of the results of testing every piece of material 
in a given batch. The usual purpose of carrying out the 
tests is to estimate the properties of the population distri­
bution from the data provided by the sample. Two 
properties that it is usually desired to know are the 
arithmetic mean and the standard deviation, which is 
a measure of variability.
4.3 Standard deviation (a). The standard deviation is 
defined by taking the average, over the whole population, 
of the squared deviation of each value from the mean, and 
then taking the square root of this average. This definition 
of variability serves as a basis for statistical calculations, 
and various properties of the distribution may be deduced 
from it.
The frequency of individual readings decreases as they 
become further from the mean. Thus, for Normal distri­
bution, approximately 1 in 20 readings may be expected 
to be beyond ± 2 a  from the mean, 1 in 80 beyond ± 2.5a 
and 1 in 370 beyond ± 3 a  (see figure 1).
The distance from the mean that is exceeded by any given 
proportion of readings can be calculated from the formula 
± uo. where a is a tabulated quantity called the standardized 
Normal deviate.
4.4 Coefficient of variation ( )̂. It is sometimes con­
venient to express the standard deviation as a percentage 
of the arithmetic mean, in which case the value so 
calculated, known as the coefficient of variation, can be used 
as a measure of the relative variability of sets of readings 
with different mean values.
4.5 Estimation of the mean and the standard deviation 
from a sample. An estimatej>f the population mean is pro­
vided by the sample mean, x, which is simply the arithmetic 
mean of the results composing the sample.
The best estimate of the population standard deviation 
is obtained by calculating the sample standard deviation, 
i.e. by summing the squares of the deviations of individual 
results from their mean, dividing this sum by one less than 
the total number of readings, and taking the square root 
of the quotient.
Thus,

S  ( x - x  

n — 1

where
X is the individual reading; «
X is the arithmetic mean of the group of readings; 
n is the number of readings in the group; 
s is the estimate of standard deviation having the same 

units as X.



The purpose of dividing the sum of squares by (/? — 1)
(this 1/7 — 1) is called the 'degrees of freedom') rather than 
by n is to correct a tendency to underestimate the popula­
tion standard deviation when n is used as the divisor, 
especially in the case of small-sized samples. Reference 
should be made to the glossary in appendix C for a descrip­
tion of this.
Note that the symbol Z  denotes 'the sum of . . In t̂his 
case the sum is that of all individual values of (x — x)^
For methods of computation of s see the worked example 
in clause 5.
The quantity s above is referred to as simply the standard 
deviation, the prefix 'estimate' being omitted, as under­
stood. It is in several respects the best way of expressing 
the variability of results in a sample.
The population coefficient of variation, as estimated from 
the small sample, may be calculated as follows:

V =  lOOs/l;^

where ixl is the numerical value of x, regardless of the 
algebraic sign; that is, v is always positive.
Other measures of 'central tendency' and 'variability' 
exist. If further statistical processing of the test data 
is contemplated these are not usually used. They may, 
however, have application in straight reporting of results 
and for this reason they are discussed in 4.6.
4.6 Other measures of central tendency. Other mean values, 
such as the harmonic and geometric means, can be regarded 
as the arithmetic mean of transformed data and need not 
be considered further.
4.6.1 Median (middle value). As a statistic this is based 
primarily on the order of observations and not on their 
values. It has a larger variance than the arithmetic mean.
On the other hand, its value is not affected by an atypical 
value; moreover the median value may be considered to be 
more 'typical' than the mean value for skew distributions.
In the case of a Normal distribution the mean and median 
are coincident.
The median may be calculated by arranging the results 
in ascending or descending order and crossing off the 
highest and lowest results together until only one (or two 
values) are left. If two values are left the median may 
be estimated as the mean of these values e.g. •

Set ^  :iar7' 13.8
median = 13.8

Set 2. 14.7 20.9 22.3 ,23rS 2 ^
median = 21.6

4.6.2 Mode (most frequently occurring value). This value 
has the largest frequency density and is therefore intuitively 
the most typical of the central values. Its value is, however, 
difficult to estimate, even if the shape of the underlying 
distribution is mathematicaUy known.
4.6.3 Mid-range. This value is defined as the average of the 
highest and lowest values. It has some drawbacks when 
used as a measure of central tendency since it is based only 
on the two extreme observations, which are usually the least 
reliable; furthormore, its efficiency decreases rapidly for 
larger series of observations.
From a theoretical point of view this is not a very meaning­
ful statistic, especially when taking into account the fact 
that a large number of theoretical distributions have 
an infinite range.

4.7 Other measures of variability. The scatter of data can 
be described according to three principles'.

(a) measures of distance (e.g. the range);
(b) measures compiled from the deviations of every 
observation from some central value (e.g. mean 
deviation);
(c) measures compiled from deviations amongst all 
observations (e.g. mean difference).

4.7.1 Range. The range is the numerical difference between 
the highest and lowest of a set of readings. In a Norma) 
population the average range of a number of measurements 
is related to the population standard deviation by a factor 
which depends on the number of readings. An estimate 
of the standard deviation is given by multiplying the range 
of a random sample of n observations from a Normal 
population, by the factor This is illustrated in table 1, 
which is an extract from Lindley, O.V. and Miller, J.C.P. 
Cambridge elementary statistical tables (C.U.P.) (tables 
6 and 7),
Table 1. Factors for estimating 
standard deviation from a range 
of values in a Normal population

n

2 0.8862
3 0.5908
4 0.4857
5 0.4299
6 0.3946
7 0.3698
8 0.3512
9 0.3367

10 0.3249

For estimating the standard deviation, the range is almost 
as good as any other method when the number of readings 
is not larger than about ten and the readings follow a distri­
bution which is not far from the Normal. However, since 
the exact calculation of the sample standard deviation is 
relatively quick on ten results or fewer, this would normally 
be carried out.
With larger numbers of readings, the use of the range is not 
recommended, except as a check against gross errors 
in calculating the standard deviation. It is better to use the 
standard deviation, which utilizes all the information in the 
data, instead of relying on the extreme readings.
4.7.2 Interquartile range. This is the distance between two 
values between which the central half of the observations 
fall; e.g. 50 % of the observations fall within the so-called 
'interquartile range'.
Interquartile ranges are only used when very large sample 
sizes are available; tftey reveal very little, however, about 
the way the bulk of the observations Is condensed inside 
this range.

• •

4.7.3 Mean deviation. This is the mean of the absolute 
value of the deviations around the central value. As it is 
excluded from more advanced statistical techniques. Its 
usefulness is restricted; nor does it give a more comprehen­
sible measure of the scatter than standard deviation. 
Obviously the value obtained will depend on the type
of central value chosen (mean, median, or mode).



4.7.4 Mean difference. This is the average of the absolute 
values of the differences of all possible pairs of observations. 
Again because of the absolute nature of mean difference, 
this measure of dispersion is excluded from statistical 
techniques while it virtually offers little more than the 
standard deviation.
4.8 Unexpectedly high or tow results. It is often required 
to know whether an apparently high or low result In a set 
of data should be rejected.
As a general principle, a reading should never be rejected 
unless there are grounds outside the data for so doing.
An occasional high or low reading is to be expected, 
to a varying degree, in the distribution of any rubber 
property, due to the nature of the rubber itself, and rejection 
of such readings may lead to a distorted picture of the 
distribution; the standard deviation, in particular, will 
be underestimated.
On the other hand, high or low readings are sometimes 
caused by errors of operation or damaged test pieces, in 
which case the readings can be legitimately rejected; 
or again, they may be due to flaws in the test piece, such 
as thin spots or pin holes. The rejection may then depend 
on the purpose of the test. For example, in testing the air 
permeability of rubber sheeting the presence of occasional 
high readings might be taken to indicate the presence of pin 
holes in the rubber. If the rubber is being tested as a func­
tional material, then such readings should be retained; but 
if the air permeability is only required as an index of the 
rubber's technical properties, possibly in relation to the 
compounding, then the reading might fairly be rejected. 
When a rejectable reading is suspected, and there are 
no confirmatory indications, statistical criteria outlined 
by W.J. Dixon {Processing data fo r outliers: biometrics, 
1953, 9(1) 74) can sometimes be used to decide whether 
or not the reading may be legitimately rejected. An alter­
native method is the use of Grubb's test described in Anna!, 
math. stat. 21 (1) (March 1950).
The problem is approached statistically by considering the 
sample values to be drawn from a mixed population, 
consisting of a main population together with a small 
proportion of values from another, interfering population, 
which differs from the first in mean, or variance, or in both, 
so as to yield occasional high (or low) sample values. The 
object of the test criteria is to remove the more extreme 
members of the interfering population in order to be able 
to calculate relatively unbiased estimates of the mean and 
standard deviation of the main population. It is assumed 
that both populations follow the Normal distribution law, 
The definition of the test criteria, and their critical values, 
are given in table 2. In this table, x „  is the extreme value 
to be tested, is the nearest neighbour to x„, and 
so on, the readings being arranged in order of magnitude 
from Xj to Xfj.
If the value of r  calculated from the sample data exceeds 
the tabulated critical value, the extremf reading may be 
rejected with a fair degree of confidence (see clause 5 for 
a worked example).

# *
The critical values correspond to a significance level of 5 %. 
This means that, if the data follow a pure Normal distri­
bution, only one extreme reading in 20 will, on the average, 
be rejected unnecessarily.
The method should not be used for test methods where 
there is reason to think that the distribution departs from 
the Normal form. Data of this type, however, may often 
be transformed to nearly Normal form (see 4.1).

To summarize, no reading should ever be rejected unless 
either there is evidence of a definite source of error affecting 
the reading, or the reading is found rejectable according 
to the above statistical test; the latter may be applied only 
when the data are known to follow a Normal distribution 
law, or have been transformed to this form. Indiscriminate 
use of the rejection test will result in underestimation 
of the standard deviation.

Table 2. Criteria for rejecting outlying values by 
Dixon's test
N u m b e r  o f 
re a d in g s , n

B
9

10

11
12
13

C rite r io n

tn *
Xfj XI

X n X-y

rn — ^n-2 
Xn X j

C ritic a l
values

0.642
0.560
0.507
0.554
0.512
0.477
0.576
0.546
0.521

4.9 Confidence interval for the mean, when the population 
standard deviation (a) is known. The means of groups of 
n readings (for example 5, 10 or 20) may be expected to 
vary about the true mean in a Normal manner, but they 
will naturally be less variable than individual readings.
The distance from the true mean within which a single 
observed mean may be expected to lie, with a given 
probability, is given by:

± uo!\/n  

where

u is the standardized Normal deviate and has the value
1.96 for a probability of 95 % and

aty/n is the standard error of the mean.

Values of the standardized Normal deviate corresponding 
to other levels of probability may be obtained from tables 
of the Normal distribution.
The limits given above refer to the distribution of observed 
means about a known true mean. By using the same limits 
in an inverse sense, it is possible to state, with a good degree 
of confidence, the range, about the observed mean, within 
which the true but unknown mean lies. When used in this 
sense, the limits are called 'confidence limits', the degree 
of confidence being expressed by a probability, which is 
usually tai<en as 95 %. Thus the 95 % confidence limits 
of a population mean are given by:

-  1 . 9 6 0
x ± ~

Wn

Confidence limits are the usual methods of expressing the 
precision of an estimate. The use of 95 % limits ensures that 
the statement that the true mean lies withln^hese limits 
will be correct, on the average, in 19 cases out of 20. It will 
be noted that the precision, or closeness of the limits, 
depends on the number of readings and their standard 
deviation and also on the probability level (usually 95 %) 
selected.



The lines in figure 2 show the distance of the 95 % con­
fidence limits from the mean, for typical small numbers 
(n) of tests. These lines are based on the above formula, 
but, to make them of more general application, the distance 
has been expressed as a percentage of the mean, and plotted 
against coefficient of variation, in the place of standard 
deviation.
The limits are expressed as the percentage distance from the 
sample mean, which is based on n readings; these limits are 
only applicable when the population standard deviation, o, 
is known. Limits in the case where the standard deviation,
a. is estimated by s from the sample are given in figure 4.

4.10 Number of tests required for a given precision of the 
mean, when the population standard deviation (o) is known.
The formula u a l\/n  given in 4.9 may be used to calculate 
the number of readings required to estimate the mean with 
a given degree of precision. For example, in a rubber test 
having a coefficient of variation of 7 %, the number of 
readings required to estimate the mean within ± 5 %
(95 % confidence limits) is given by the equation:

(1.96) (7)/Vn = 5

whence n = 7.5.
Therefore eight readings should be sufficient to give the 
required precision.
4.11 Significance of difference between means of two tests, 
when the population standard deviations (a) are known.
In comparing the means of two tests it is necessary to have 
some criterion to decide whether the difference is likely 
to have arisen by chance, or indicates a real difference 
between the means of the populations from which the 
samples were drawn. This criterion is called the least 
significant difference.

It is so chosen that, as long as no real difference exists 
between the means of the two populations, there is only 
a small probability of it being attained or exceeded. This 
probability, or 'significance level', is usually taken as 1 in 
20, but circumstances may required other level to be used. 
When the observed difference between means exceeds the 
least significant difference it is unlikely that the respective 
true means are the same. The conclusion that a real differ­
ence between them exists will be incorrect in fewer than 
1 case out of 20 (if the 5 % level of significance is chosen). 
A difference that is less than the least significant value, 
on the other hand, should be taken to indicate not that the 
true means are necessarily the same, but merely that the 
difference is 'insignificant', that is, small enough to escape 
detection by the given data.
For the general case, where the number of readings in the 
two tests differ, the least significant difference is given 
by the following formula:

least significant difference between means

• 1.96oV(1/«i + 1/^2 ) (5 % level of significance)

where

n, and are the numbers of readings in the two tests, 
and
a is the known standard deviation of the population.

For the usual case, where each test contains the same 
number (n) of readings, the formula becomes:

least s gnificant difference between means

= 1 96(7v/(2/n) (5 % level of significance)



The least significant difference, according to the last 
formula, is plotted in figure 3 forn = 5, 10, 20 and 30 
readings in each test. As in figure 2 the coefficient of 
variation is used in place of the standard deviation; the 
least significant difference is accordingly expressed as per­
centage of the mean.
When the standard deviation, s, is estimated from the 
sample, figure 5 should be used.
4.12 Confidence interval for the mean, when the population 
standard deviation (9) is unknown. In 4.10 and 4.11 the
precision of the mean and the least significant difference 
between means have been calculated on the assumption 
that the variability is accurately known; this is not usually 
the case, however. It is often not sufficient to rely on 
‘typical' values of variability based on previous data. The 
precision of a test mean or the least significant difference 
between two test means should preferably be calculated 
from the estimate of standard deviation provided by the 
test readings themselves. This estimate of standard deviation 
is subject to some error, since the number of readings 
available is generally small (10 or 20) and, to allow for this 
error, the foregoing formulae require some modification, 
as follows.

Confidence limits for the mean = x ± 
where

t  is given, for any chosen probability level, by Student's 
f-distribution (double-sided) (tables of which are 
included in nearly all the references; an abbreviated 
version is also given in table 12, appendix D);

s is the estimate of the standard deviation, calculated 
from the test readings;

n is the number of readings in the group.

Values of t  depend on the number of readings, but, in the 
tables, the different values of t  are usually arranged accord­
ing to a number 7  which is called the number of degrees 
of freedom. In the present case, the number of degrees 
of freedom is one less than the number of readings, so that 
the tables should be entered at 7  = (/? — 1}.
For calculating 95 % limits, the appropriate values of t, 
corresponding to typical values of n, are as follows:

t  = 2.78 for/? = 5 readings;

t  = 2.26 for n = 10 readings;

t  = 2.09 for n = 20 readings.

P e r  c e n t

12 13 M  15 16 17 18 19 2 0  21  2 2  2 3  2 4  2 5
v a r i a t i o n  ( V )  p e r  c e n t

F ig u re  3 .  R ea l d if f e re n c e  v e rsu s  t r u e  c o e f f ic ie n t o f  v a r ia tio n



It will be noticed that, owing to the uncertainty in the value 
of the standard deviation estimated from a small number of 
readings, the values of t  are somewhat larger than the 
corresponding values of u given by the Normal distribution 
(u = 1.96, see 4.9) and the 95 % limits for the mean are 
correspondingly wider.
Figure 2 refers to the precision of the mean when the 
standard deviation is known from independent data, as may 
be the case in quality control. Figure 4 gives the corres­
ponding information when the standard deviation has 
to be calculated from the test data, which will be the more 
common occurrence.
4.13 Significance of difference between means of two tests 
when the population standard deviations are known 
(Student's f-test). For the general case, where the number 
of readings in the two tests differ:

Least significant difference between means

= VTTZn7^M7n7l
where

f is given by Student's f-distribution (double-sided) 
(the tables should be entered at 7  = + /?2 — 2);

5 is a pooled estimate of standard deviation, calcu­
lated from the two sets of readings (see 4.15 and 
worked example in clause 5);

r i ] , Hi  are the numbers of readings in the 
two test.

For the usual case, where each test contains the same 
number (n) of readings:

Least significant difference between means

=  tsy /{2 ln )

(The f tables should be entered at 7  = 2n — 2).

For a 5 % level of significance, typical values of f are:

f = 2.31 for/7 = 5 readings in each test;

t  =  2.10 for/7 = 10 readings in each test;

f = 2.02 for n = 20 readings in each test.

Figure 5 gives the corresponding information to that in 
figure 3.
Before this particular significance test can be applied, the 
validity of obtaining a pooled estimate of the standard 
deviation should be checked. This is done by applying 
a test for significance of difference between variances, 
described in 4.14, If the variances are not significantly 
different, then the pooled estimate of the standard 
deviation is derived as shown in 4.15, and the calculated 
value of the pooled standard deviation ($) is used in the 
above formulae.



if the F-test of 4.14 is signiftcant, indicating that the 
population variances are really different, but it is still 
essential to compare the n>eans. then a very approximate 
test would be stiti to combine the variances, calculate s, 
and test for a significant difference in the means in the 
same way as above. However i t  is stressed that the test 
in this case would only be a rough guide.

4.14 Significance of difference between variances. On some 
occasions it is not a comparison of mean value which is of 
major importance, but a comparison of variances. For 
example, if two operators are each carrying out a number 
of repeat determinations on a particular sample it wilt 
often be useful to assess whether there is any real difference 
in the repeatability of the two operators; i.e. whether the 
results of one operator are much more closely grouped 
around his mean value than the results of the other operator 
are around his.
(It may also be of interest to test whether there is any bias 
between the two operators, i.e. whether the means are 
significantly different; but this is not considered in this 
subclause.)
Let the consideration be confined to the following specific 
situation;

Operator 1 carries outn, determinations and the 
variance of the nj results is s].

Operator 2 carries out n^ determinations and the 
variance of the /?2 results is si.

The ratio
s  ̂ (larger)

s  ̂ (smaller)
ts calculated, where s (larger)

is the larger of Sj and s\, and s  ̂ (smaller) is the smaller 
of Si and «2-

Appendix D, table 13 is then entered at the appropriate
point,
where

7 1 is the number of degrees of freedom on which s* 
(larger) has been based;

72 is the number of degrees of freedom on which s  ̂
(smaller) has been based.

If the ratio
(larger) 

s  ̂ (smaller)
is greater than the appropriate value

of the tabulated F-distribution (appendix D, table 13) 
then it can be stated with 95 % confidence that the 
population variance (of which s^ (largest) is an estimate) 
is greater than the population variance a$ (of which 
s^ (smallest) is an estimate).

If the ratio
s^ (larger) .

(smaller)
is iess than the appropriate F-distri*

bution value, then we have not sufficient evidence to refute 
the hypothesis that the two population variances are equal. 
This test (known as the F-test or 'variance ratio' test) could 
atso be applied in the comparison of the variances of various 
methods of analysis.
For strict correctness this type of test should be applied 
to the variances sj and 52 mentioned in 4.15.
The ideas which have been discu»ed so far are sufficient 
for the solution of many common types of problem, and 
in clause 5 they are applied to an example. Clause 5 
also contains hints and precautions on computing which 
will lighten the arithmetical work.



4.15 Pooled estimate of standard deviation from two sets 
of readings. The 'pooled' estimate should be formed only 
if the difference in variances as described in 4,14 is not 
significant. When two sets of readings are available, the 
best 'pooled' estimate of standard deviation is given by the 
following formula, rather than by the mean of the two 
separate estimates:

S(Xi-Xi)^ + 2{X2 -  X2^
+ n2 — 2s =

When the numbers of readings (/7j and 0 2 ) in the two tests 
differ, more weight is given, by this formula, to the test 
containing the greater number of readings.
When the standard deviations have already been calculated 
separately for each sample, giving S| and $2 for example, 
it is seen that the last formula gives the 'pooled' estimate 
of standard deviation as:

s = (ni -  1)5i + I n j "  1)52 
/7j + — 2

Sometimes the variability will be very different in the two 
sources of material supplied and pooling of the two 
estimates may not be justified. It would be beyond the 
scope of this guide to deal here with the procedure to be 
followed in this but it may be remarked that, pro­
vided that the two samples are of nearly the same size, the 
error arising from pooling will never be serious.
4.16 Single sided significance tests and confidence intervals. 
A 'double sided significance test' is one in which significant 
differences In either direction are of importance. A situation 
in which only a difference in one specific direction is of 
importance requires what is called a 'single-sided signifi­
cance test'. The type of test to be used depends completely 
on the practical application, and is always decided before 
the experimentation.
In the situations described in 4.11 and 4.13 the general 
question being asked is: 'Is there a significant difference 
between . . . .  ?' In that case a double-sided significance 
test was appropriate. However, in practical applications 
a typical question might be: 'Is the mean of this batch 
significantly less than the specification?' In such a situ­
ation it Is of no importance if the batch mean is signifi­
cantly greater than the specification; only if it is signifi­
cantly below the specification value need action be taken, 
and so a single sided test should be used.

(a) If the population standard deviation (a) is known 
the following applies.
When a single sided test is appropriate and the test is 
being carried out at the 5 % significance level, the 1.96 
which occurs in the formulae in 4.11 for 'least signifi­
cant difference between means', is replaced by the value 
of 1.64. Also a single-sided 96 % confidence interval for 
the population mean can be calculated. This can be 
expressed as 'it is 95 % certain that the population mean

_  1 . 6 4 0
(s greater than x ------7̂ '

y n
or as 'it is 95 % certain that the population mean is less

-  . 1 . 6 4 0  
than X + —

depending on which is the statement relevant to the 
practical application.
(b) If the population standard deviation (a) is unknown 
the following applies.

When a single-sided test is appropriate, the r-distribution 
values referred to in 4.13 would be replaced by the 
corresponding figure from the singie-sided f-distribution 
tables. For a 5 % level of significance and a single sided 
test, the appropriate f-value would be

t  = 1.86 for n = 5 readings in each test

t  = 1.73 f o r = 10 readings in each test

t  = 1.68 for n =  20 readings in each test.

Also a sii>gle-sided 95 % confidence interval for the
population mean can be calculated. This can be expressed 
as 'it is 95 % certain that the population mean is greater 

t$
than X —

or as 'it is 95 % certain that the population mean is less 

than K +
sTn'

again depending on which statement is relevant to the 
practical situation. The value of f in these confidence 
intervals would be that selected from the 5 % column 
of the single-sided distribution, with the appropriate 
degrees of freedom.

5. Application of statistical tests to the example in 
clause 3
The figures in the example in clause 3 can now be treated 
by the statistical methods developed in clause 4.
The standard deviation is calculated by the formula in 4.5.
It is not necessary to calculate and (ist the individual 
deviations (x — x) and their squares in order to estimate the 
standard deviation. Computation is simplified by the use 
of the identity:

S (x“ x )2 = 2x ^ -  (£x)Vn,

where
2x^ is the sum of squares, and 
(2x)^/n is the correction factor, 

so that the estimate of standard deviation becomes:

s =
2x*-(2x)V n

The application of this formula will be clear from the 
worked example. The computing proceeds by the following 
steps.

(a) Arithmetical work may be reduced by the use of an 
arbitrary origin, chosen at or near the general level of the 
readings. In the worked example below, this is done
by subtracting 20 from each reading before proceeding 
with the calculations. The standard deviation is 
unaffected by thS procedure.
(b) Compute the sums 2x and 2x^, remembering that 
X may ryaw be the distance of the readir]  ̂from the 
arbitrary origin. For the squares of the readings, the 
use of tables is recommended (for example, Barlow's 
tables of squares) if a calculating machine is not available. 
In some cases, as in parts of the example, the numbers 
are small enough to be squared in the head.
(c) Before proceeding further Sx and should be 
checked. Rather than merely repeating what has already 
been done, with the risk of repeating the same error,



the following identity can be used:

2 (x +  1}= = 2x  ̂+ 2 2x +/7.

Calculate the sum of the squares of (x + 1) and check 
that it agrees with the right-hand side of the identity, 
using the values of and 2x already obtained.
(d) Calculate x = 2x/n. This, added to the arbitrary 
origin, is the mean value.
(e) Compute 2(x —x)^from the identity given. When 
working out (2x)V/7, retain at least as many significant 
figures as in 2x^.
{f} Compute the standard deviation s from the formula 
given.

In some situations it might be necessary to compare all the 
rubbers in an attempt to assess whether there is in fact 
a real rubber-to-rubber variation. This is best done by means 
of 'analysis of variance’, a technique which is described 
in clause 7. If consideration is restricted to rubbers A and 
B, then the least significant difference is calculated by the 
formula in 4.13. The pooled standard deviation for the 
pairs being tested is worked out and the value of t  used 
is 2.10 for a 1 in 20 level of significance and 10 readings 
in each column (see 4.15). The results are then tabulated 
as follows.

R u b b e r A B

M ean m o d u lu s  a t  30 0 %  
e lo n g a tio n  (M Pa) 1 9 .0 4 2 0 .0 9

O b se rv ed  d if fe re n c e  
S ta n d a rd  d e v ia tio n 1 ,6 0 4

1 .0 5
1 .7 3 8

L east s ig n if ic a n t 
d if fe re n c e 1 .5 7

The difference between A and B is less than the significant 
value and one can only conclude that, on the basis of the 
tests done, the difference between rubber B and rubber A 
could have arisen by chance and that there are therefore 
no statistical grounds for asserting that rubber B is of signi­
ficantly higher modulus than rubber A.
The difference between the means of A and B is about
1 MPa and the manufacturer still has the feeling, in spite 
of the conclusion of the ten tests, that a true difference 
of modulus is being concealed, which he would be able 
to detect if a large number of tests were carried out.
In pursuit of this idea, he does ten more tensile tests each 
on second samples of rubbers A and B and gets the follow­
ing readings:

A 17.0, 26.3, 20.0, 16.4, 18.4, 19.7, 19.8, 18.6, 15.8,
17.0

B 20.1, 19.9, 21.1, 20.2, 17.5, 20.0, 17.6,20.0, 28.8,
27.4

If these are combined with those of A and B above, the 
mean values for twenty tests become: •

A = 18.97 and B = 20.68 

and the standard deviations:

A = 2.341 and B = 2.935.

Had the standard deviations remained constant, the larger 
number of tests would have meant the least significant 
difference would have been smaller. However, in this case 
the apparent increase in variability means that the least

significant difference is actually greater, 1.70 as compared 
to 1.57 previously. Nevertheless, the actual difference 
between the means Is 1.71 and thus we can conclude, 
on the basis of twenty tests on each rubber, that rubber 
B is actually of higher modulus than rubber A.
It will be noticed that in the example it was concluded that 
there was no reliable evidence of any difference between 
A and B; this conclusion was modified when twenty tests 
were carried out. A difference of about 1 MPa escaped 
detection when only ten tests were done. If the manufac­
turer had been interested only in detecting differences 
of 2 MPa ten tests would have been sufficient. For a 0.5 MPa 
difference, more than twenty tests would have been required 
and in general the number of tests should be related to the 
minimum size of difference in which one is interested. 
Sample D (see clause 3) contains one very low reading. In
4.8 a simple rule was given for rejecting abnormal results. 
The rejection criterion rn  in this case takes the value 
0.495, which is above the limit of 0.477 for 10 tests. The 
extreme value 11.5 is therefore rejectable. Whether it should 
be rejected will depend upon considerations discussed 
in 4.8.
From the treatment given in this clause to a manufacturer's 
typical problem, it will be seen that the application of 
statistical methods enables one to draw objective con­
clusions as opposed to those which rely on the intuition 
and experience of the tester. This can be claimed as one of 
the principal advantages of using statistical methods.
Other more advanced techniques may be used with 
advantage in rubber problems, but are beyond the scope 
of this guide, which should be regarded merely as an intro­
duction to the subject. The methods of analysis of variance, 
for example, are particularly useful in experimental work 
and, for detailed discussion of such methods, reference 
should be made to the textbooks (see, however, clause 7). 
One way in which the analysis of variance can be of use 
is in investigating the causes of variation in test results, 
which may be attributable to the testing instrument itself, 
to its methods of operation or to irregularity in the rubber 
sample. In a suitably designed experiment, such methods 
of analysis will enable these separate factors to be dis­
tinguished with a minimum of effort.
Although the statistical methods that have been discussed 
are ver^ useful for a number of purposes,*it should be 
pointed out that no amount of statistical analysis can 
compensate for inaccuracies due to unsuitable or 
unrepresentative choice of rubber samples. Where lack of 
uniformity exists in a batch of rubber to be sampled, 
statistical methods can be of use in helping to determine 
the best methods of sampling.

6. Design and analysis of experiments
6.1 Introduction. During the past few years the industrial 
chemist has come to accept, although at times somewhat 
reluctantly, that a mathematical treatment of his data 
may bring to light useful facts not disclosed by his normal 
approach to the problem. This bridge having been crossed, 
chemists and statisticians have been working closely together 
in most large industrial firms for a considerable time. How­
ever, when the subject of 'design of experirrj^nts' is men­
tioned many technologists still feel that this field of work 
is solely theirs by right. It is not yet fully appreciated that 
this is an area in which it is most vital that the technologist 
and statistician should be working intimately together. The



statistical approach to the problem is intended to supple­
ment the technologist's knowledge and experience, and not 
to replace it.
Often, on the plant scale, designed experimentation is out 
of the question owing to:

(a) lack of plant availability for experimental pro­
grammes; or
(b) lack of control of process variables.

However, these restrictions seldom apply to laboratory work 
and do not always apply to plant work. Wherever experi­
mental planning is possible it is essential that it is undertaken 
before the work is commenced, for otherwise by the time 
the problem reaches the statistician all the experimental 
effort has been spent and he has put before him data which 
is rarely ideal for analysis. More discussion in the initial 
stages of the problem could often prevent unnecessary 
work or point the experimentation in the most appropriate 
direction. Another common feature of problems of this 
type is that discussion has taken place, a plan of experi­
mentation has been agreed, but somewhere along the line, 
probably due to extremely high or low results (or 
'intuition'), the technologist is diverted from his plan and 
the data never reach a statistician. It may be necessary 
to modify an experimental plan as results become available, 
but even then hidden benefits will usually emerge from 
a statistical analysis of the resulting data.

(b) From figure 6 we see that the lowest compression 
set value occurs under these conditions at 10 days.
(c) Now fix the postcure time at 10 days, and carry 
out two further tests with test durations seven and 
14 days respectively.
(d) The best result (i.e. lowest compression set) is 
obtained with a test duration of seven days, so that 
we might assume that the best possible combination 
of the two factors is:

(1) test duration of seven days;
(2) postcure time at 100 of 10 days, with 
a resultant compression set value of 8 %.

With this approach to the problem we would obviously 
not have obtained the best combinations of the levels of 
the factors for a minimum compression set.
As shown in figure 6, the effect of test duration is different 
at the different levels of postcure; this effect is known 
as an 'interaction' between the two factors, and is illustrated 
in table 3.

Table 3. Factor interaction on 
compression set
Postcure Tost duration
days days

1 7 14
7 13 7 9

10 10 8 14

14 15 18 22

F ig u re  6 . C o m p re ss io n  s e t ve rsu s  p o s tc u r e  fo r  d if f e r e n t  d u ra t io n s  
o f  t e s t

6.2 'Classical'approach. In most practical situations more 
than one variable is worthy of consideration, and when 
this is so it is of the utmost importance that the technologist 
is guided away from the idea of varying one factor^at a time. 
The following example illustrates well the dangers involved 
if careful attention is not given to the initial design of 
experiments.
Suppose we are considering the effect of two factors, 
duration of test and postcure time at 100 °C, on the com­
pression set of a vulcanizate, and each factor is to be 
considered at three distinct levels.
If we decide to \^ry one factor at a time, then we might 
conduct the experiment as follows.

(a) Fix the test duration at one day and carry out three 
tests with postcure times of 7, 10. and 14 days 
respectively.

Very important interactions would be completely over­
looked in varying one factor at a time. In fact, in the plan 
outlined in the example, the resultant conclusion could have 
been worse: we have assumed that for each experiment we 
obtained the true value of compression set, whereas in 
practice ou'’ result would deviate from this due to experi­
mental error.
6.3 Statistical approach to experimental design. The
following steps represent the various stages in a typical 
problem analysis involving experimental design.

(a) One of the first points to emerge from the initial 
discussion should be the question which one is hoping 
to answer from this programme of work. The primary 
concern in most situations is to locate the optimum 
operating conditions, taking into account both the 
quality of product and the operating costs.
(b) In order to reach the goal described in (a), it will 
be of the utmost importance to assess what is signifi­
cantly affecting the product quality. At this stage
a decision has to be made, mainly based on knowledge 
and experience of the process, as to which factors are 
going to be deliberately varied In the investigation.
It might be seen at^his point that a number of variables 
can be measured, but cannot be specifically controlled, 
in which case the values of these variables should 
be recorcfed for each experiment. •
(c) Any data already available concerning this particular 
process can be of great value. It may be possible to show, 
from a statistical analysis of this previous data, that some 
of the factors discussed in (b) are of no importance. 
Valuable information concerning the experimental error 
may also be obtained, and consequently this may reduce 
the size of the experimental programme to be planned.



Id) From the information obtained in (b) and (c) it is 
necessary to decide the number of levels of each factor, 
and this in turn will partially govern the number of 
experiments necessary. If, from the knowledge of the 
process, it is thought that the effect of a factor will 
be curved rather than linear, then usually this factor will 
be considered at three levels at least.
Ideally one would hope to cover many factors, each 
at many levels, in very few experiments, and still obtain 
precise information on the relative importance of the 
factors. In practice this is obviously impossible, and 
usually the number of experiments which can be carried 
out governs the number of factors and levels that will 
be considered. Factorial experimental designs are in 
frequent use, and in this situation all the possible experi­
mental conditions are covered. For example, if there 
are three factors (sulphur, accelerator, cure time) with 
two, three and four levels respectively, then the full 
set of experiments would be;
E x p e r im e n t S u lp h u r A c c e le ra to r C u re  t im e

1 0 .5 0 .5 10
2 0 .5 0 .5 15
3 0 .5 0 .5 2 0
4 0 .5 0 .5 2 5
5 0 .5 1 .0 10
6 0 .5 1 .0 15
7 0 .5 1 .0 20
8 0 .5 1 .0 2 5
9 0 .5 2 .0 10

10 0 .5 2 .0 15
t1 0 .5 2 .0 2 0
12 0 .5 2 .0 2 5
13 2 .0 0 .5 10
14 2 .0 0 .5 15
15 2 .0 0 .5 2 0
16 2 .0 0 .5 2 5
17 2 .0 1 .0 10
18 2 .0 1 .0 15
19 2 .0 1 .0 2 0
2 0 2 .0 1 .0 2 5
21 2 .0 2 .0 10
2 2 2 .0 2 .0 15
23 2 .0 2 .0 2 0
2 4 2 .0 2 .0 2 5

The total number of experiments is given by 2 x 3 x 4 
= 24, i.e. the product of the number of levels of the 
factors. This is by no means the only possible design, 
but it is both comparatively simple and in frequent use.
(e) In step (d) the number of factors and their levels 
have been chosen, and hence the total number of experi­
ments determined. I f  careful attention is no t given
to the problem a t this po in t i t  is possible that useful 
information w ill be lost, because often in practice there 
are nuisance factors confusing the issue. For example, 
in the above plan of 24 experiments it could be that 
only 12 experiments could be done using one batch 
of raw material, and the other 12 would have to be done 
using another batch possibly with a different quality.
If the 12 experiments with low sulphfir were done on 
batch 1, and the other 12 experiments on batch 2, then 
the effect of sulphur would be totally confusec^with the 
variation in the quality of raw material. This effect 
is known statistically as 'confounding'. Any factors such 
as raw material, operator or machine, which may alter 
during the experimentation, should be brought to light 
at this stage, and the best way of splitting the design 
into the required blocks can be decided; but this will 
generally necessitate the help of a statistician.
(f) Another practical difficulty which is often 
encountered is the situation where many variables are

to be considered, but only a very limited number 
of experiments can be carried out. If we had, for 
example, seven factors each at two levels, very few 
technologists would even remotely consider doing the 
128 experiments necessitated by a factorial design. 
However, in such a situation, by carefully choosing 
a sub-set of say 32 experiments, much valuable 
information could still be obtained. Designs such as these 
are known as fractional factorials and again these will 
usually require the advice of a statistician. The two 
ideas of confounding and fractional factorial experi­
mentation are most ussful, and most easily applied, 
when all the factors under consideration have the same 
number of levels.
(g) When the experiments have been split into any 
blocks or groups which are required, then the order
of the experiments within each block should be random­
ized, for example by drawing lots.
(h) Once all the experiments have been completed the 
analysis of the data begins. The methods of analysis
of the data are as numerous as the experimental designs, 
and it is outside the scope of this clause to detail the 
various techniques. However, to illustrate the analysis 
of a factorial experimental design, one example is con­
sidered in detail. This example is followed through the 
steps (a) to (h) as described.

Example. This simple example, using only factors at two 
levels, is chosen to avoid having to introduce sums of squares 
and other simple but lengthy calculations.
For each experiment the property which is to be measured 
is the resistance value, and the pur pose of this programme 
of work is to maximize the resistance value.
Two types of additive, A and B, are being considered, and 
the other factors which it is thought might be affecting the 
resistance value are the humidity level and the amount 
of a particular additive. Each of these factors has two 
distinct levels which are to be covered in the work.

Humidity level 

Amount of additive

20 % relative humidity 
60 % relative humidity
0.1 %
1 %

It is thought that there should be no other- variables causing 
variation in the resistance, and hence blocking of the experi­
ments is not required.
From previous repeat measurements of the resistance value 
the measurement standard deviation a has been estimated, 
and so it is not necessary to carry out any repeat experi­
ments or measurements within this programme.
Summarizing the situation, we have three factors each at 
two levels, giving us a total of 2^ (= 8) experiments. The 
order of the experiments is randomized, e.g. by drawing 
lots, and the experimental programme is detailed below, 
together with the results.

E x p e r im e n t
n u m b e r

A d d itiv e
ty p e

H u m id ity
level
%

A m o u n t  o f  
a d d itiv e
%

R es is ta n ce
lo g ,n ^

1 A 2 0 0.1 16
2 B 2 0 1 7
3 A 6 0 1 8
4 B 6 0 0.1 12
5 A 2 0 1 9
6 B 2 0 0.1 15
7 B 6 0 1 6
8 A 6 0 0.1 11



In this situation an estimate of the effect of any of the 
factors can be obtained by calculating the average value 
of the resistance at each level of the factor and then 
evaluating the difference between these two averages.

Effect of additive type 

= average result for additive type A

— average result for additive type B

=  ^( 1 6  +  8 + 9 + 1 1 ) - U 7 + 1 2 + 1 5  +  6)

= 1J -  J0 =  I.O 

Effect of humidity 

= average result with high humidity 

~  average result with low humidity 

=  ^ ( 8 + 1 2  +  6 +  t 1 } - i ( 1 6  +  7 +  9 + 1 5 )

-  1 1 | =  - 2 . 5

Effect of amount of additive 

= average result with high amount

— average result with low amount

=  1 ( 7  +  8 +  9  +  6) - i ( 1 1  +  12 +  1 5  +  16)

=  7 5 - 1 3 H - 6 . 0

In this particular type of experimental design the inter­
action between say additive type and humidity level would 
be defined as follows:

Interaction between additive type and humidity level

= 5 (average result for additive type A, humidity 60 %

— average result for additive type A, humidity 20 %)

—  ̂(average result for additive type B, humidity 60 %

— average result for additive type B, humidity 20 %)

1 8 + 11 16 + 9] 1 12 + 6 7 + 15\
2 I 2 2 ^ 2 i 2 2 /

= -  1.5 + 1.0 ^  -  0.5

With similar definitions for the other interactions these 
can now be evaluated.

Interaction between additive type and amount of additive

+ 9 16 + 11
2 2 

= - 2 .5 +  3.5 = 1.0

1 / 6 + 7 
2 ^  2

12 + 15

Interaction between humidity level and mount of 
additive

1 [8 + 6  7 + 9 ' 1 [12  + 11 16 +
2 I 2 2 j 2 i 2 2

= - 0 .5  + 2.0 = 1.5

In a comparatively simple type of experiment where we 
have n factors each at two levels, and consequently do 
2” experiments, the standard error of each of the estimated

o
effects or interactions is

\ / r

In our example n =  3 and let us assume a = 1; hence the 

standard error of any of the estimated effect is
W2-

The 95 % confidence interval for any effect is given by
/ , \

to.1
estimated effect — 1.96 ~f-

estimated effect +1.96 .1

V2,

i.e. estimated effect ± 1.38
and if this confidence interval does not Include zero then 
the effect is significant.
Any effect which is assessed as significant has less than 
a 1 in 20 chance of being zero.
In our example the effects which are significant are;

(1) effect of humidity;
(2) effect of amount of additive;
(3) interaction between humidity and amount of 
additive.

The three-factor interaction between the factors of additive 
type, humidity and additive could be considered in a similar 
manner.
we can summarize our conclusions as follows.

(1) By decreasing the humidity from 60 % to 20 % we 
expect to increase our resistance by 2.5 ± 1.38 on 
average.
(2) By decreasing the amount of additive from 1 % to
0.1 % we expect to increase our resistance by 6.00 ± 1.38 
on average.
(3) The significant interaction is best illustrated by the 
following two way table for the resistance.*

A d d itiv e

0 .1% 1.0%

H u m id ity 20% 1 5 .5 8 .0

60% 1 1 .5 7 .0

Humidity has little effect at the higher level of additive 
but a much larger effect at the lower level of additive.
(4) The suggestion following the analysis would be that 
the additive type is unimportant, but that further work 
with lower levels of humidity and additive may be worth­
while.

6.4 Summary. The discussion has so far been of a very 
general nature, to ill&strate that:

(a) statistically designed experimentation is'worthwhile;
(b) manv practical difficulties can be encountered and 
overcome;
(c) discussion between statistician and technologist 
should occur very early in the project wherever possible.

No attempt has been made to describe the many types 
of experimental design that may be applicable.



7. Analysis of variance
7.1 Introduction. In most rubber testing situations the 
variability in the quality measurements is contributed
to by a number of sources of variation. For example, there 
is often present:

(a) variation in the quality of one or more of the raw 
materials;
(b) variation in process operating conditions at one 
or more stages;
(c) errors arising in sampling and testing the rubber.

Analysis of variance is a technique which can be used 
to isolate and estimate the effect of those sources of 
variation which are having a significant effect on the 
quality measurements.
The more sources of variation of types (a), (b) and (c) that 
are present, the more complex will be the analysis of the 
resultant data, and for many commonly occurring large 
problems a computer programme becomes virtually 
essential.
To illustrate the basic ideas and steps involved in analysis 
of variance, a simple example will be considered.
7.2 Example to illustrate analysis of variance. In order
to investigate the quality of a consignment of rubber, four 
samples have been taken and five repeat determinations 
of the compression set have been carried out on each 
sample.
The results obtained are as follows.

S am p l«  1 S a m p le  2 S a m p le  3 S a m p le  4

2 3 6 5
3 4 8 5
1 3 7 5
3 5 4 3
1 0 1 0 2

Mean for sample 1 
Mean for sample 2 
Mean for sample 3 
Mean for sample 4

Using this data it is required to estimate the true average 
compression set of the rubber, and also to assess whether 
or not there is a significant sample-to-sample variation.
The first obvious step is to calculate the mean for each 
sample to give us some idea of the variation between 
samples.

= 2 
= 3 
= 7 
= 4

The question that is now under consideration is whether 
or not we could reasonably expect such differences in the 
sample means to arise (owing to the presence of the testing 
error and the limited numbes of tests per sample) if the 
true compression set for all the samples was really the same.
In order to do this, an analysis of variance table is con­
structed which breaks down the total variation in the results 
into the components for which sources of variation can 
be identified.
A measure of the total variation present in the data is given 
by summing tbe squares of the deviations of each individual 
result from the overall mean of the results.
If X represents an individuaj  ̂result and x represents the 
overall mean, then 2 (x — x)^ is a measure of the total 
variation.
A measure of the 'within-samples variation' or 'variation 
due to testing error' is given by summing the squares of the 
deviations of each result from its own sample mean.

A measure of the 'between-samples variation' is given by 
squaring the deviation of each sample mean from the overall 
mean, multiplying each squared deviation by the number 
of results on that particular sample, and summing the 
resultant figures.
In our example the overall mean, x, = 4.
The total sum of squares (i.e. a measure of the total 
variation^

= (2 -  4)2 + (3 -  4)^ + (1 -  4)2 + ..... + (2 -  4)2

= 116

Within-samples sum of squares (i.e. a measure of the withirv 
samples variation)

= (2 -2 )2 +  (3 -2 )= +  (1 -2 )2 +  (3 -2 )2 +  (1 -2 )2  

(from sample 1)

+ (3 -3 )2  + + (0 -3 )2

(from sample 2)

+ ( 6 - 7 ) 2 +  + (1 0 -7 )2

(from sample 3)

+ (5 -4 )2 +  + (2 -4 )2

(from sample 4)

= 46

Between-samples sum of squares (i.e. a measure of the 
between-samples variation)

= 5(2 -  4)2 + 5(3 -  4)2 + 5(7 -  4)2 + 5(4 -  4)2 

= 70

An analysis of variance table can be constructed as follows.

S o u rc e  o f s u m  o f d e g re es  o f m ean
v a ria tio n s q u a re s f r e e d o m s q u a re

B e tw een -sam p les 7 0 3 2 3 .3
W ith in -sam p le s  ( te s tin g ) 4 6 16 2 .9

T o ta l 1 16 19 6.1

The above procedure has been followed with a view to 
explafriing the concept of analysis of variance, i.e. the 
breaking down of the total variation into its constituent 
parts. In practice, however, if the calculations are to be done 
by hand or using a calculating machine the following 
method should be followed. It is easier to apply and will 
necessarily give identical results to the above calculations.

(2x-)2
Total sum of squares = X x h ------- ^• n

where

I>xjj is the sum of the squares of the individual results; 

Sx,y is the sum of the Individual results; 

n Is the total number of results.

(Zx-)2Between-samples sum of squares = —r -------—
P n

where

T\ is the sum of the results on the /th sample; 

p is the number of tests on each sample.



The within-sample sum of squares is then obtained by 
subtracting the between-sample sum of squares from the 
total sum of squares.
In the sample considered earlier in this clause,

(2  ̂+ 3 2 + 12  + 3 2 + 12  + 32 + 42

+ .... + 3  ̂+ 2 )̂ = 436

(2 + 3 + 1 +  3 + 1 +  3 + 4 +  .... + 3 + 2 )  = 

20

r ,  = lOTi = 15 fa = 35T4 = 20 

p = 5

Sx,y = 

n =

80

Then

80^
Total sum of squares =  4 3 6 - -—  = 116

20

Between-sample sum of squares

(10^+ 15  ̂+ 35^ + 20^
20

reasonably be estimating the same thing. This can only 
be so if Og ^  0.

23.3
In our particular example the ratio Is

F-distribution 5 % point for 3 and 16 degrees of freedom 
is 3.24. Hence we feel at least 95 % certain that aj ^  0; 
that is, there Is present real sample-to-samp(e variation.
In this situation the best estimate of af is 2.9, and an 
estimate of a \ is obtained from

(betweerv^mpies mean square — within-$amples mean square)

= 4.1

Often it would be necessary not only to estimate from the 
available data the true average compression set but also 
to calculate a confidence interval within which we feel sure 
the true average will lie.
If p tests have been carried out on each of r  samples, and 
Ot and a l estimated as above, then an approximate 95 % 
confidence interval for the true average compression set 
Is given by

Within-samples sum of squares = 116 — 70 = 46

In any similar analysis of variance in which we have say 
n experimental results available, the total number of degrees 
of freedom will be (a? — 1).
For any factor which is considered to be a possible causc 
of variation in the test result, the number of degrees of 
freedom associated with the variation attributable to that 
factor will be (r — 1), where r  is the number of levels 
of that particular factor. Hence in this particular example, 
where four samples are being considered, the degrees 
of freedom associated with the between-samples variation 
is three.
The within-samples degrees of freedom can be obtained 
by (total degrees of freedom — between-samples degrees 
of freedom) = 16.
In each instance the 'mean square' (which is similar to 
a variance) is sum of squares divided by degrees of freedom.
If the sampling variance is denoted by a, and the testing 
variance by o?, then it can be shown that

(a) 2.9 (= 46/16) is an estimate of a?;
(b) 23.3 (= 70/3) is an estimate of af + 5o|.

In (b) the 5 occurs because five tests have been carried out 
on each sample. If the number of tests per sample was not 
constant, the appropriate number could be calculated, but 
from a more complex formula.
^  between-samples mean square
The ratio------------------------------------is now calculated

within-samples mean square
and if this ratio is less than the appropriate tabulated
F<listribution value (see table 13 appendix D; in this
instance the F-distribution value would have 7 ~  3, 72 —16)
then it can be reasonably assumed that the two mean
squares under consideration are in fact estimates of the
same thing. From the last paragraph this can only be so if
0^ = 0. In that situation the 'best' estimate of the testing
variance would b« the total mean square.
If the ratio when evaluated is greater than the appropriate 
F-distribution value, this suggests that the between-samples 
mean square and the within-samples mean square cannot

x ± 2

(n our particular example this confidence interval is
4.0 + 2.16.
In some instances it is required to assess whether certain 
of the differences between the samples or items are in fact 
statistically significant. If data are only available on two 
samples then the method detailed in clause 5 should be 
followed. If the data are from more than two samples, 
and assuming that the analysis of variance has indicated 
that there is real sample-to-sample variation present, the 
situation is more complex and a statistician should be 
consulted.
7.3 Summary. Only a very simple example has been used 
to illustrate the idea of analysis of variance. As many 
different forms of experimental design are available so 
analysis of variance tables are constructed in many different 
but appropriate ways. In practically every instance certain 
basic steps can be identified.

(a) There is the need to identify the possible causes 
of variation. These may be:

(1) only sampling and testing;
(2) the main effects and interactions of many
factors;
(3) the dependence on some uncontrolled variable.

(b) The breakdown of the total variation into the parts 
that can be attributed to each source of variation.
(c) The construction of the analysis of variance table, 
including the corrA:t allocation of the degrees of 
freedom.
(d) The application of the appropriate F-^lstribution 
tests to assess the significance of the various sources 
of variation.

The book Design and analysis o f  industrial experiments 
edited by O.L. Davies, published by Oliver and Boyd, 
contains many excellent worked examples of various forms 
of analysis of variance.



8. Application of regression analysis
8.1 Introduction. Regression analysis is concerned with 
the estimation of the relationship between some response 
variable (e.g. tensile strength) and some other variable
or group of variables (e.g. quality of raw materials or 
operating conditions) which may be affecting the response.
It is an attempt to explain the variation in the response 
in terms of the variation in the variables. Regression tech­
niques can be used to assist in the analysis of carefully 
planned and controlled experimental laboratory work, 
or they can be applied to data arising from routine 
manufacture where the planning of experiments and 
control of the variables are often virtually impossible.
If data Is available only on a response and one other 
variable then often valuable information can be obtained 
from a simple graphical plot (see figure 7). Confining our 
attention to the data points marked x, it appears obvious 
that 'age of material' has a definite effect upon 'duration 
of flexing life'. However, if the four extra points marked 
Q become available we are much less certain whether the 
two variables are really related. A more precise method 
of assessment than the graphical plot and visual judgment 
is now required. In practical situations many variables are 
usually present (see table 4) and faced with such a mass of 
figures visual inspection cannot help us, while unfortunately 
graph plotting is confined to two dimensions. In such 
situations as these regression techniques are invaluable. 
Analysis of data by regression techniques can roughly 
be broken down into three stages:

(a) the assessment of which variables are really having 
an effect upon the response;
(b) the estimation of the best relationship between 
these variables and the response;
(c) the calculation of the variation in the response 
explained by the equation, and the calculation of the 
residual or unexplained variation.

8.2 Correlation coefficient. The simplest way to assess 
whether or not there Is a significant linear relationship 
between two variables is to calculate the 'correlation 
coefficient'. The data required to calculate this parameter 
are a series of 'pairs' of observations on the response (e.g. 
tensile strength) and the other variable (e.g. percentage 
of natural rubber in polymer) which is often called the 
independent variable.
If y represents the response and x  represents the 
independent variable, we may have n pairs of observations

(Ki.Xi) {Y2.X2) ... (K„,Xo).

From the way in which it is calculated, the correlation 
coefficient will never be less than —1 and never greater 
than +1.
If all the points lie on some line with positive slope, then 
r = 1, and if all the points lie on some line with negative 
slope, then r = — 1.
Usually the correlation coefficient will not take either 
of these extreme values but will lie somewhere in between. 
The sign of the evaluated correlation coefficient will 
indicate whether the 'best' straight line through the points 
has a positive or negative <:iope. Using table 5, it is also 
possible to assess whether or not a calculated correlation 
coefficient indicates a significant relationship between the 
two variables, and this test depends on the number of 
data points available. For example, if we had only six 
pairs of observations available we could say that we were 
95% certain that there was a real relationship between the 
variables if the calculated correlation coefficient was less 
than —0.811 or greater than +0.811. However, if 72 data 
points were available we would be 99% certain that there 
was a real relationship between the variables if the calculated 
correlation coefficient was less than —0.302 or greater 
than +0.302. If the calculated correlation coefficient does 
indicate a significant relationship i t  is very important to 
realise that this is no t necessarily a cause and effect 
relationship.
If there are a large number of data points available, then 
a value of r  as low as 0.1 might be classed as significant.
The implication of this would be that on average as x 
increases then y  also increases, but that whereas we feel 
confident that x and y are varying together there is still 
a great deal of unexplained variation in the response y.
if, on the other hand, when the significance test is carried 
out the value of r  does not indicate a real linear relationship, 
then it Is still possible that there could be some curved 
or more complex relationship between y  and x. If this 
is thought to be the case multiple regression analysis 
or some more complicated curve fittlng-technique should 
be used.
To summarize this subclause, if there are only two 
variables of interest, the correlation coefficient can be 
quickly calculated and used to give a good indication 
of the significance of the relationship between these two 
variables. It does not, however, enable us to estimate the 
best straight line through the available data points. The 
correlation coefficient between duration of flexing life 
and age of material is evaluated In the example in 8.7.

The correlation coefficient (usually denoted by r) between 
the response and the independent variable is given by.

r  =
S ( x - x ) ( / - K )

n/ 2 : U - x) ^ I { K - k)'
(rx)(S/)SxK-------------





8.3 Simple linear regression. Interest is still confined 
to the situation where there are only two variables, but 
now it is required to estimate the 'best' straight line 
through the points. We are interested in the equation

y = a + 

where
y is the response (e.g. tensile strength);
X is the so-called 'independent' variable (% natural
rubber in polymer);
a and b are parameters to be estimated from the data:

b is the slope of the line (the estimated increase in 
y for a unit increase in x);
a is the intercept on the y  axis (the value of y  when 
X  = o if this is meaningful).

)Ne would no t expect this equation to predict the exact 
value o f  y  from the corresponding value o f  x, bu t we hope 
that i t  would help to quantify the suspected relationship 
between x and y. We require the values of a and b that 
in some way give us the fitted line as close as possible to the 
data points. The vertical distance of a data point from the 
fitted straight line is known as its 'residual' (see figure 8). 
The values of the coefficients a and b are so chosen as to 
minimize the sum of the squares of these residuals.

From figure 8 we see that the residual for the point 
iy\ ,x\) is given by y-, ~ a  —bx\. Remembering there are 
n data points, we are obtaining a and b to minimize;

£  (K i - a  - 6 x j ) ^

«
By differentiating with respect to a and b, and equating 
the resultant expressions to 0,  we are left with two 
simultaneous equations involving a and b. Solving these 
equations we arrive at our solution:

Sxy —
(2x)(£k)

b =
( £ x ) ‘

2 /  b'Lx 

n n

becomes available, then the best estimates of the intercept 
and slope are likely to be slightly different, and we there­
fore need some measure of the accuracy of our estimates. 
It can be shown that the 95 % confidence interval for the 
true slope is:

b ± tn-is

2 (X j-x ) ' 1*1

If this confidence interval excludes 0  then we are 95 % 
certain that the true slope is non-zero and therefore that 
X is definitely affecting y.
In the above confidence interval,

t „ - 2  is the 5 % point of the double-sided f-distribution 
on (/? — 2) degrees of freedom;
s is the residual standard deviation (i.e. the standard 
deviation of the residuals) and equals:

.2 (Ki- a ~ b x - y

V n - 2

A guide to the proportion of variation In y  which can 
be attributed to its dependence on x is given by what is 
called the percentage fit of the equation.

n _
The total variation in /  is measured by 2  (y-, — y) .I«i
The unexplained (residual) variation in y  Is measured by 
n

.2  (Ki ~ a  -~bx\) which can be shown to be equal to:

(2k)'
- b Z x y -

2 x 2 /

which in turn can be shown equal to: 

2 (k - k) ' ( 1 - r" )  

and the percentage fit

/

=  IQO
\

1 -
- 6 x i) A

.2 (/i -  y) /
If all the points lie on the fitted line, percentage fit = 100, 
but in general most of the points will not be on the fitted 
line and the percentage fit will be less than 100.
Often we will be interested in the accuracy of the equation 
for predictjng the value of y  corresponding to a given value 
of X . For a given value of x, say X,  we can say:

we are 95 % certain that the real or true value of y  lies 
in the range

Even at this stage we do not know the true values of the 
intercept and slope, but we have obtained the best 
estimates from the available data. If one more pair of points

(a +  bX)  ± — ~
i^ (x i-x )2

However, because the observed value of y for any experi­
ment varies about its true value, the confidence interval 
for the observed value Is wider:



we are 95 % certain that the observed value of y will lie 
in the range

n n _
2 (xj — x) i«i

r\2

The example in 8.7 illustrates the technique of simple linear 
regression.
8.4 Multiple regression. Simple linear regression is of 
restricted use in the practical environment of industry, 
because in most situations there are more than two variables 
of Interest. However, regression techniques can be powerful 
tools in the study of data when they are extended to
a number of independent variables, or to higher degrees 
of equation (quadratic or possibly cubic). In such 
applications the use of a computer becomes virtually 
essential, but a number of quick and efficient computer 
programmes are already available for carrying out such 
regression analyses.
In 'multiple linear regression' we are considering an equation 
of the form:

K = a + £>iXi + b2X2

where, for example,
y is the tensile strength;
Xi is the carbon black;
Xj is the % natural rubber in the polymer.

This equation cannot be represented by a graph in two 
dimensions, but we can still measure its usefulness by 
evaluating the percentage fit (i.e. the percentage of variation 
in y accounted for by the equation).
In 'multiple quadratic regression' the equation of interest 
is of the form:

y  = a +  bxXx+ +  b \ 2XxX2 -  ̂ +  b i 2x \

This form of equation allows for the fact that the relation­
ship between the response and the independent variables 
may be curved rather than linear. The XiX  ̂term allows for 
the possibility of an interaction between variables Xi and 
Xj, and would be very important if the effect of x i is 
dependent on the level of Xj. •
8.5 Rejection of insignificant terms. If we fit the two 
equations

K = a + 6iXi + b i ^ 2  and

y =  a + b jX i

to the same set of data, the former equation will aways 
give the higher percentage fit. In other words, including 
an extra variable will always Increase the percentage fit. 
However it could be that the increase In percentage fit, 
due to Including the second variable, is not statistically 
significant (i.e. possibly the extra variable is having no real 
effect and the increase In percentage fit is just due to 
chance).

In practice we fit an equation which includes ali the 
variables that might be having an effect upon the response, 
and then we apply statistical tests to reject all those variables 
which are not making a significant contribution to the 
percentage fit. The theory of this statistical significance 
testing in multiple regression is more complex, and is not 
included here.
In some Instances a variable may be retained in the final 
equation as having a statistically significant effect upon the 
response, and yet the coefficient of that variable might 
be so small as to make It of no practical importance. If the 
equation is being used to predict the response at specific 
valjes of the Independent variables, such practically 
insignificant terms could be left out of the equation for 
ease of calculation purposes. On other occasions a variable 
might be rejected from the final equation when it Is known 
from the technology of the situation that this variable 
really does affect the response. In some such instances 
it may be necessary to ensure that such a variable Is 
retained in the final equation.
If, when we have carried out our regression analysis, the 
variation In the response unaccounted for by the equation 
Is still comparatively large, then there are a number 
of possibilities:

(a) the wrong type of equation has been fitted;
(b) some important variable(s) has not been covered 
in the analysis;

or
(c) there is a large error in the determination of the 
response.

8.6 Summary. Regression analysis In ali Its forms Is a most 
useful guide to control or optimization of some response 
(or even group of responses), but it Is seldom that equations 
can be determined to be used for accurate predictions.
Many words of caution have been written on the subject 
of regression analysis, because, being such a powerful 
technique, there is a danger of indiscriminate or Irres­
ponsible usage. It Is, however, worthwhile to be reminded 
of some of the dangers.

(a) If an attempt is made to analyse inappropriate or 
unsuitable data nonsensical conclusions may well be 
reached.
(b) The problem should be formulated carefully, as It 
is not always clear whether certain variables should 
be classed as Independent variables or responses.
(c) It can be very dangerous to use a regression equation 
to predict response values outside the experimental 
region already covered.Extrapolation can be very 
misleading.
(d) Using regression analysis is not a substitute for 
thinking about the problem. Knowledge of the 
situation beingjnvestigated is valuable, both before 
and after the regression analysis.



Table 4. Response values for combinations of the 
three independent variables

Table 5. Correlation coefficient v numbers of 
observations

Response Variable 1 Variable 2 Variable 3 Number of pairs 
of observations

Value of 
correlation

Coefficient for 
significance(duplicates)

15.0 13 9 1 20 0 10 % level 5% 1 %
1,4 0.9 1 20 3 3 0.9877 0.9969 0.9998
2.6 1.3 1 20 7 4 0.9000 0.9500 0.9900
3.4 2,4 1 20 14 5 0.805 0.878 0.9587

35.6 34.2 1 70 0 6 0.729 0.811 0.9172
8.0 7.8 1 70 3 7 0.669 0.754 0.875
4.3 2.7 1 70 7 8 0.621 0.707 0.834
9.9 8.1 1 70 14 9 0.582 0.666 0.798

18.5 19.3 3 20 0 10 0.549 0.632 0,765
0.9 1.4 3 20 3 11 0.521 0.602 0.735
2.7 6.9 3 20 7 12 0.497 0.576 0.708

10.8 9.7 3 20 14 13 0 476 0.553 0.684
42.1 44.7 3 70 0 14 0.457 0.532 0.661
16.7 19.6 3 70 3 15 0.441 0.514 0.641
11.5 11.0 3 70 7 16 0.426 0.497 0.623
12.6 13.5 3 70 14 17 0.412 0.482 0.606
25.3 24.7 7 20 0 18 0.400 0.468 0.590
10.2 9.4 7 20 3 19 0.389 0.456 0.575
16.3 16.9 7 20 7 20 0.378 0.444 0.561
22.1 23.2 7 20 14 21 0.369 0.433 0.549
58.8 55.7 7 70 0 22 0.360 0.423 0.537
19.2 17.9 7 70 3 27 0.323 0.381 0.487
22.1 24.4 7 70 7 32 0.296 0.349 0.449
12.1 12.1 7 70 14 37 0.275 0.325 0.418
29,4 33.6 14 20 0 42 0.257 0.304 0.393
16,1 17.4 14 20 3 47 0.243 0.288 0.372
14.8 15.0 14 20 7 52 0.231 0.273 0.354
11.2 11.4 14 20 14 62 0.211 0.250 0.325
67.5 67.7 14 70 0 72 0.195 0.232 0.302
32.8 32.9 14 70 3 82 0.182 0.217 0.283
17.6 16.0 14 70 7 92 0.173 0.205 0.267
14,7 16.5 14 70 14 102 0.164 0.195 0.254

8.7 Example on simple linear regression. The problem 
is to assess whether or not the 'age of material' is having 
a significant effect upon the 'duration of flexing life', 
and to determine the best linear relationship showing the 
dependence of 'duration of flexing life' on the 'age of 
material'.
Twelve pairs of observations are available, as shown 
(see also figure 7).

Duration of 
flexing lifet^)
40.8 
387
42.9
41.4
40.5
41.7
37.8 
32.7 
33.3
36.9 
30.0 
31.2

Age of 
material (x)

1
2
3 •
4
4.5
8
9

10
11
12
13.5
15

Calculations

Sx = 93 = 967.5

'Zy =  447.9 = 16937.91

SxK = 3277.65 n =  ^2

(2x)^Sx‘

Correlation coefficient r  =
-  193.575

V246.75 X 220.0425 

-0.831



Comparing this value with the significance levels of the 
correlation coefficient in table 5, we see that, since our 
value is less than -0.708, we are 99 % certain that there 
is a relationship between these two variables.
For the 'best' straight line, we evaluate a and fo, as follows;

b =
-  193.575 

246.75

447.9

= -0 .7845

a =
12

93
- b '  —  =  43.405 

12

Hence the best linear relationship showing the dependence 
of K on X is

/  = 43.405-0.7845X

Total sum of squares = S ( / — = 220.04.

Residual sum of squares = a —

= 68.18.

68.18
Percentage fit = 100 1 - 220.04

•= 69,0.

y residual sum
-------------

n —

of squares 
2

= 2.61.

95 % confidence interval for the true slope of the line is 

t„-2(5%)s
b ±

V 2(x-"x)^

2.228 X 2.609which is — 0.785 ±
15.708

i.e. from — 1.155 to — 0.415.

9. Reporting of results
The methods of presentation of conclusions and results 
arising from the application of statistical techniques vary 
as much as the statistical techniques themselves, and even 
for an application-of a specific technique the presentation 
of results would vary from one person to another. It is 
virtually impossible to eliminate this subjective element and 
consequently the following remarks are offered for guidance 
only.
Confining attention to the case where measurements have 
already been made on some particular variable, it is desired 
to present a concise summary of the total information 
available. One of the first steps, which is usually informative, 
if not essential, provided sufficient results are available, 
is to construct a histogram which condenses the data from 
a large number of individual results into a more meaningful 
graphical form. To construct a 'histogram' the results are 
combined into say approximately 10 distinct groups, with 
at the most say 5 % of the observations lying outside the 
interval covered by these groups. Usually the groups are 
of equal intervals on the measured variable and attention 
is here restrictecJto this case. The major step in constructing 
the histogram is to count the number of observations 
in each interval. Assuming that in this case all the results

are recorded to one decimal place, a 'verbal' way of 
presenting the information is; ■

is 0
je 10 to 14.9 is 10
je 15 to 19.9 is 10
je 20 to 24.9 is 20
)e 25 to 29.9 is 35
je 30 to 34.9 is 50
je 35 to 39.9 is 70
)e 40 to 44.9 is 40
)e 45 to 49.9 is 30
je 50 to 54.9 is 15
)e 55 to 59.9 is 5

0
The graphical illustration of the information so accumulated 
is shown below in figure 9. The similarity between this and 
the frequency distribution discussed in clause 5 is obvious.

No. of observations <  10
No. of observations in the
No. of observations in the
No. of observations in the
No. of observations in the
No. of observations in the
No. of observations in the
No. of observations in the
No. of observations in the
No. of observations in the
No. of observations in the
No. of observations > 6 0

7 0

6 0

5 0

4 0

3 0

20
10
0

N? of results in ihis 
interval i e frequency

nr
K) 15 2 0  2 5  3 0  3 5  4 0  4 5  5 0  5 5  6 0  ^
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Often, an additional section neeas to De inserted at each 
end of the diagram; the height of the left-hand section 
would represent the number of observations <  10 and at the 
right-hand end the height would represent the number 
of observations >  60. In this graphical form we have not 
clearly defined our interval; obviously a result of 15 should 
only be included in one group, but which one? The way 
in which we define our group intervals exactly depends 
on the accuracy to which our results are measured; in the 
example if the results were always integers the first interval 
could be 10 to 14.9, whilst for results recorded to one 
decimal place we would have say 10 to 14.99.
This graphical presentation provides a good indication of 
how closely the individual points are clustered round 
a 'central' value, and whether or riot the results tend 
to be occurring in higher frequencies at one end of the 
scale. In the example, one might suggest that about 37 
seems to be a central value, and the graph is reasonably 
symmet'ical about this axis.
The graphical presentation includes no statistical calcu­
lations, and is suitable when a large number of results 
are available. With fewer results, the number of groups 
would need to be decreased to make the histogram worth­
while. Other pictorial techniques are available in this 
situation and one of these is explained in 12.3.
If numerical, rather than pictorial, consideration of results 
is required^and in any case with small numtiers of 
observations, a measure of central tendency (e.g. the mean) 
and a measure of spread should be calculated as described 
previously. For a small number of results (say < 10) the 
median value should preferably be calculated and quoted 
as the measure of central tendency and the range method



used for estimation of the standard deviation. For numbers 
of results less than five there is little point in calculating 
confidence limits, since these will usually be very wide 
due to the uncertainty associated with the estimation 
of the mean and standard deviation.
In practice, if more than five results are available 
attention is very often directed specifically towards the 
'true' mean value of som^process (and not the obtained 
mean value x) and from x  and s calculated as above we can 
assess how certain we are that this 'true' mean value will 
lie within a certain region. This statement might take the 
following form for the example considered earlier:

'We are 95 % certain that the 'true' mean value lies 
in the range 35 to 39'.

This confidence interval depends on the values of x, s and n.

To^ome technologists a statement of the calculated values 
of X and s would be most meaningful, while to others the 
confidence interval is going to provide all the required 
information. Because of this individual preference it is 
essential that both items should be contained in the 
tabulated results, where appropriate.
For the example considered earlier, whether or not a histo­
gram has been constructed, the following vaiues calculated 
from the raw data should provide the necessary information: 

number of observations = 285;
arithmetic mean = 37.0;
standard deviation = 16.1.

We are 95 % certain that the true mean (of the process)
lies in the range 35.1 to 38.9
It is possible to go further and construct a confidence 
interval for the true standard deviation of the process, but 
unless there is specific interest in the standard deviation 
rather than the mean, this information could tend to confuse 
rather than clarify the issue.
The presentation of results cannot really be discussed 
without some mention of the subject of 'rounding'. This 
arises in two distinct ways: the rounding of individual 
observations before carrying out any calculation and 
secondly the rounding of the results in their final presen­
tation. Considering the latter first, a logical rather than 
theoretical rule is to quote the arithmetic mean, the 
standard deviation and the confidence interval each to one 
more significant figure than the individual results are 
observed. To round off to the same number of significant 
figures as the observations could be dangerous if any form 
of comparison of mean against a target value was to be 
made. The main purpose of rounding the observations

before doing any calculations is to facilitate the arithmetic 
involved, and the need for this is not as strong as it was 
before calculating machines eased the task. More complex 
rules are available (see BS 2846 : 1957, page 40), but for 
most practical situations an effective guide would be to use 
the original data when this did not involve too much 
effort; the last significant figure could be rounded if this 
seems both reasonable and necessary.

10. Ranking methods
10.1 Ranking. Ranking methods are applied when the 
observations cannot be expressed as absolute values, but 
can be put in an order of increasing merit. In rubber testing 
they are particularly useful in judging exposed rubber 
samples by visual inspection with respect to, for instance, 
ozone cracks or discoloration.
10.2 Friedman's test. Each of m observers independently 
arranges n samples in order of increasing merit so that the 
/th observer assigns the rank /?jj to the /th sample, the best 
sample having a rank R =  n. When ties are present they are 
given the relevant average rank.
As a measure for the differences between the samples the 
value

n
K  =  Yj (Si—S)^ is determined.

/=i
The rank sum (Sj) for the /th sample is obtained by 
summing the ranks for this sample over the observers.

Si = I  flii 
/=1

and S =

n
2  Si i=l

Whenever the value of K  equals or exceeds a critical value 
K (f (see table 6) it can be concluded that there are signifi­
cant differences between the samples. Although this does 
not mean that significant differences exist within any pair 
of samples, it is generally meaningful to report the average 
ranks, R\ =S\/m.
Whether or not significance is obtained depends on the 
differences between the samples as well as on the degree of 
agreement among the observers. It may therefore be useful

12/C
to report the 'degree of concordance C = — — 5------ .

Its value may vary between 0 (no agreement) and +1 
(complete agreement).
N O T E . In o rd e r  to  o b ta in  a  h igh  d eg re e  o f  c o n c o rd a n c e  it  is n ece ssa ry  
to  d e sc rib e  th e  c r i te r io n  o f  ju d g m e n t c le a r ly  a n d  t o  re s tr ic t  th e  
c r i te r io n  to  o n e  a sp e c t.

Table 6. Friedman's test critical values for oc = 0.05 level of significance
3 4 5 6 7 8 9

*
10 11 12 13 14 15

2 . 20 38 64 96 138 192 258 336 429 538 664 808
3 18 37 64 104 » 158 225 311 416 542 691 865 1063 1292
4 26 52 89 144 217 311 429 574 747 950 1189 1460 1770
5 32 65 113 183 277 396 547 731 950 1210 1512 1859 2254
6 42 7^ 137 222 336 •482 664 887 1155 1469 1831 2253 2738
7 50 92 167 272 412 591 815 1086 1410 1791 2233 2740 3316
8 50 105 190 310 471 676 931 1241 1612 2047 2552 3131 3790
9 56 118 214 349 529 760 1047 1396 1813 2302 2871 3523 4264

10 62 131 238 388 588 845 1164 1551 2014 2558 3189 *3914 4737
11 66 144 261 427 647 929 1280 1706 2216 2814 3508 4305 5211
12 72 157 285 465 706 1013 1396 1862 2417 3070 3827 4697 5685
13 78 170 309 504 764 1098 1512 2017 2618 3326 4146 5088 6159
14 84 183 333 543 823 1182 1629 2172 2820 3581 4465 5479 6632
15 90 196 356 582 882 1267 1745 2327 3021 3837 4784 5871 7106



10.3 Outside count test. This is a rough and ready method 
for the comparison of two specific samples out of n (e.g. 
one experimental and one reference). It is carried out as 
follows:

(a) count the number of values in the sample containing 
the highest value that are higher than the highest value 
in the other sample;
(b) count the number of values in the other sample that 
are lower than the lowest value of the first sample.

If the sum of the two counts totals seven or more, it may 
be concluded that the two samples are different at the 5 % 
level.
10.4 Example of the use of Friedman's test. Ten vulcan- 
izates containing different antiozonants have been simul­
taneously exposed in an ozone cabinet. Each of five 
observers rank the 10 vulcanizates with respect to the degree 
of cracking, the criterion being crack length (see table 7).

/C = S  (Si -  S?  =  (-10)" + (-17.5)2 + ... 
i “ \

+ (9)2+ (20.5)2 = 1929

As K „  for /7 = 10 and m = 5 is 731 It Is concluded that 
there are significant differences between volcanizates.

12/CThe coefficient of concordance C =

12X 1929
/r)2 [n^ — n)

= 0.94 so that the observers agree well
25(1000-10} 

in their judgment.
When applying the outside count test to vulcanizates 9 and
10 it is easily seen that the ranks do not overlap at all, 
so that the 'outside count' is 10 (twice the number of 
observers). As this value is larger than seven it is concluded 
that vulcanizates 9 and 10 differ significantly.

Section three. Statistical techniques applicable to 
specific tests

11. Introduction
In this section statistical techniques not necessarily 
described before that are applicable to specific rubber 
tests are discussed in detail. The absence of any particular 
test from this section should not, however, be taken to 
mean that no such specific techniques are available or 
desirable.

12. Tensile testing (BS 903 : Part A2)
12.1 Introduction.Tensiietestinglnvolvesthe measurement 
of three basic properties, stress at a given strain (modulus}, 
tensile strength and elongation at break. With a small 
number of test pieces, e.g. three to five, the median should 
always be used. This clause Indicates how to obtain more 
representative values for these parameters when a larger 
number of repeat test pieces are available.
12.2 Stress at given strain (modulus). Treatment of modulus 
results is usually quite straightforward since the distribution 
of results is in most cases Gaussian. For small numbers of 
tests the median should be used. Larger numbers of test 
results may be treated as in clause 5.
12.3 Tensile strength. The distribution of tensile strength 
is not in general Gaussian but is markedly skew. This 
distribution frequently follows the so-called double 
exponential distribution (see figure 10). In the analysis 
of such a distribution the most important measure of 
which central tendency is the mode, it is often desirable 
to obtain an estimate from a set of results. It Is clearly 
not usually practical to measure so many test pieces that 
a full distribution curve can be drawn. It is therefore 
necessary to consider methods whereby the mode can be 
estimated from relatively few test results.

Table 7. Ranking of 10 rubber vulcanizates by five observers
O b se rv e r V u lc a n iza te s

1 2 3 4 5 6 7 8 9 10

A 4 5% .  5% 2 3 8 10 7 9
B 314 2 5 6 1 3% 7 9 8 10
C 3 2 4 6 1 5 7% 9 7% 10
D 3 3 6 5 1 3 9 8 7 10
E 4 2 4 6 1 4 10 8 7 9

Sum S; 17% 10 24% 28% 6 18% 41% 44 36% 48
Mean sum 5 27% 27% 27% 27% 27% 27% 27%, 27% 27% 27%

S \ - S -1 0 -17% -  3 + 1 -2 1 -  9 + 14 + 16% + 9 + 20%
Mean rank 3.5 2 4.9 .  5.7 1.2 3.7 8.3 8.8 7.3 9.6



M ode

12.3.1 Graphical method. If the results are arranged in 
numericallv descending order and plotted on specially 
designed probability paper it is possible to determine 
whether a number of observations have been drav̂ rn from 
a population with a double exponential distribution and, 
if so, its mode and standard deviation. This technique 
is best illustrated by an example. The data below shows 
the results of tensile measurements on three sets of 12 
dumb-bells cut from single sheets of vulcanized rubber. 
The results have been ranked in descending order and are 
not in the order of testing.

Tensile strength (MPa)

A B C

28.4 26.7 19,7
27.9 26.2 19.6
27.4 26.1 19.2
27.1 26.1 19.0
26.8 25.9 18.7
26.5 25.8 18.4
26.3 25.8 18.1 •
26.2 25.8 17.3
26.0 25.7 16.4
25.9 25.6 15.6
24.6 25.1 15.1
24.1 25.0 13.5

These results are plotted (see figure 11) using abspissae (in 
this case for 12 test results) obtained from table 8. After 
drawing the best straight line through these points the 
value of the tensile strength corresponding to plotting 
point zero and the slope of the line are read off. The 
former gives the mode value and the latter the standard 
deviation. If one or two points do not lie on the straight 
line these may be considered atypical and ignored. In cases 
where a reasonably representative straight line cannot

be drawn through the points the data cannot be assumed 
to be drawn from the double exponential distribution 
and this technique should not be used.
Reading from figure 11 the following results are obtained:
A mode 27.0 standard deviation 0.9
6 mode 26.0 standard deviation 0.33
C mode 18.4 standard deviation 1.5
Vulcanizates A and B are essentially similar except for 
differences in the mixing giving differing dispersions. In 
practice it has been found that the value of the standard 
deviation is often a useful irdicator of the uniformity 
of dispersion, poor dispersion giving rise to high values 
of standard deviation.
This graphical technique, whilst having the advantage of 
enabling atypical results to be disregarded, is time consuming 
and It Is often preferable to use a purely numerical method.

S ta n d a rd iz e d  d e v ia tes  (p lo t  p o s it io n s  ta k e n  fro m  d a ta  in  c la u se  3 ) 
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12.3.2 Numerical method. In this case the test results 
are again ranked in decreasing order and each value multi­
plied by*a weighting factor obtained from-table 9 or 10.
The sum of these terms gives in effect the mode and 
standard deviation that would have been obtained by 
drawing a least squares line through the data plotted as 
shown in 12.3.1. Thus:

Mode = SjiVi + S3W2 + S3W3 + ...

Standard deviation = S id i  + S i d 2 +S^d^-^r ...

When the process Is carried out on the data In 12.3.1 the 
following results are obtained:

A mode 26.96 standard deviation 0.94
B mode 25.99 standard deviation 0.33
C mode 18.41 standard deviation 1.52

Where more than 12 data are used it is normally better 
to use the graphical method, but where the number of 
results lies between 5 and 12 the numerical rAethod Is very 
convenient, especially If a simple desk calculator is available.
12.4 Elongation at break. This follows the same type 
of distribution as tensile strength and may be treated 
similarly.
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Table 9. Weighting factors w for calculating mode
5 6 7 8 9 10 11 12

1 0 .3 2 7 0 .2 7 4 0 .2 3 6 0 .2 0 7 0 .1 8 5 0 .1 6 7 0 .1 5 2 0 .1 3 9
2 0 .2 6 9 0 .2 3 3 0 .2 0 5 0 .1 8 2 0 .1 6 4 0 .1 5 0 0 .1 3 7 0 .1 2 6
3 0 .2 1 7 0 .1 9 7 0 .1 7 9 0 .1 6 3 0 .1 4 9 0 .1 3 7 0 .1 2 6 0 .1 1 7
4 0 .1 5 3 0 .1 5 9 0 .1 5 9 0 .1 4 4 0 .1 3 4 0 .1 2 5 0 .1 1 7 0 .1 0 9
5 0 .0 3 4 0 .1 1 1 0 .1 2 5 0 .1 2 4 0 .1 2 0 0 .1 1 4 0 .1 0 7 0 .1 0 1
6 0 .0 2 5 0 .0 8 6 0 .1 0 0 0 .1 0 3 0 .101 0 .0 9 8 0 .0 9 4
7 0 .0 1 5 0 .0 6 9 0 .0 8 4 0 .0 8 7 0 .0 8 8 0 .0 8 6
8 0 .0 1 0 0 .0 5 6 0 .071 0 .0 7 5 0 .0 7 6
9 0 .0 0 5 0 .0 4 7 0 ,0 6 1 0 .0 6 6

to 0 .0 0 2 0 .0 3 9 0 .0 6 3
11 0 .0 0 0 0 .0 3 4
12 - 0 . 0 0 1

Table 10. Weighting factors d for calculating standard deviation
/K^ 5 6 7 8 9 10 11 12

1 0 .2 1 3 0 .1 8 7 0 .1 6 2 0 .1 4 2 0 .1 2 8 0 .1 1 6 0 .1 0 6 0 .0 9 7
2 0 .1 1 6 0 .1 1 5 0 .1 0 7 0 .1 0 0 0 .0 9 2 0 .0 8 6 0 .0 8 0 0 .0 7 5
3 0 .0 2 8 0 .0 5 3 0 .0 6 3 0 .0 6 6 0 .0 6 5 0 .0 6 3 0 .0 6 2 0 .0 5 9
4 - 0 . 0 7 9 - 0 . 0 1 3 0 .0 1 9 0 .0 3 4 0 .0 4 0 0 .0 4 4 0 .0 4 5 0 .0 4 5
5 - 0 . 2 7 8 - 0 . 0 9 6 - 0 . 0 3 1 - 0 . 0 0 1 0 .0 1 5 0 .0 2 4 0 .0 2 8 0 .0 3 2
6 - 0 . 2 4 6 - 0 . 0 9 8 - 0 . 0 4 2 - 0 . 0 1 3 0 .0 0 3 0 .0 1 9 0 .0 1 8
7 - 0 . 2 2 0 - 0 . 0 9 8 - 0 , 0 4 7 - 0 . 0 2 2 - 0 . 0 0 6 0 .0 0 4
8 - 0 . 2 0 0 - 0 . 0 9 5 - 0 . 0 5 1 - 0 . 0 2 7 - 0 . 0 1 2
9 - 0 . 1 8 4 - 0 . 0 9 2 - 0 . 0 5 2 - 0 . 0 3 1

10 - 0 , 1 7 0 - 0 . 0 8 9 - 0 . 0 5 3
11 - 0 . 1 5 8 - 0 . 0 8 6
12 - 0 . 1 4 8

N  is th e  to ta l  n u m b e r  o f  t e s t  re su lts ;
n  is th e  serial n u m b e r  o f  te s t  r e s u lt ,  in c rea s in g  w ith  d e c rea s in g  m a g n itu d e .

13. Tear strength (crescent) (see BS 903 : Part A3)
13.1 Use of linear regression to give better discrinDination 
of the test. Tear strength, in this test, is a measure of the 
force required to break a nicked test piece. Obviously the 
larger the nick the lower the force required to break the 
test piece. Within a limited range of nick depths, their 
relation to tear strength can be regarded as linear. *
The method permits the nick depth to be in the range
0.42 mm to 0.58 mm. This is because of obvious practical 
difficulties in controlling the depth of cut made.
Depending on the formulation of the rubber this range 
of nick depths can give tear strengths differing by as much 
as 40 %, or as little as 5 %.

•
in situations requiring maximum discrimination between 
tear strength values the amount of variation in the test 
results can be reduced by removing the variation attributable 
to nick depth differences. This can be done in the following 
manner. •
Prepare and nick about 12 test pieces. Vary the depth of 
nick from test piece to test piece so that the range 0.3 mm 
to 0.6 mm is fairl^ evenly covered. Measure nick depth 
on both sides of the test piece. Use the average value 
in subsequent calculations. Measure the tear strength of 
each test piece in random order by the recommended 
method.

Calculate the linear regression equation and the correlation 
coefficient.
Let X 1X2 mm ... x „  mm be the nick depths.
Let / 1K2N ... Krt N be the sample tear strengths.
Determine constants a and b in the regression line:

)/ = a + bx.

(a) Obtain the totals

xi + Xj + ...x„ i.e. 2x 

x \  =  x \  +  ...x^ i.e. 2x^

Similarly calculate T.y and 

• îKi + X2K2 + i . e .  SxK

(b) Calculate the sums of squares

Z x ^ - (2x)2

= C,yy

2x • Zk ^SXK------------= Cyi



(c) Calculate the following.

{1) Correlation coefficient, r =
Cyl

\ /C[ ]  • Cyy

C.w ̂  I
(2) Slope of regression line, b. b =

Cn  

2k -  b2x(3) K “  i'^tercept, a a = ------------

(4) (Residual error) 

n - 2

(d) Calculate the value of y from the equation 

/  = a + bx

using x =  0.50 mm.

This value of y is the best estimate of tear strength at 
a nick depth of 0.50 mm which can be used for further 
calculations and comparisons.
(e) Calculate

/ I  (0.5- x )2
(a + 0.5b) ± t n . 2 ' S r J - +  ---- -------

\  n A 1

where f is the Student's t.
This will give the 95 % confidence limits on the true y  
value corresponding to a nick depth of 0.5 mm.

14. Abrasion resistance (see BS 903 ; Part A9)
14.1 Use of analysis of variance. This test measures the 
volume loss in 1000 revolutions of the abrasive. These 
notes illustrate the procedure for four vulcanizates Aj,
A2, A3, A 4 , tested in triplicate.
The procedure is suitable for a hierarchical analysis of 
variance to give guidance on judging the differences 
between the four vulcanizates.
The following calculation procedure illustrates how this 
would be done.

N O T E . F o u r v u lc a n iza te s  a re  c o n s id e re d  b u t  th e  m e th o d  n e e d  n o t  
b e  re s tr ic te d  to  fo u r .  •

(a) Form a table of the volume loss results for each 
measurement:
Test 1 2 3 R o w  to ta l

Vulcanizate
Aj X\ -^3 ■^3

A2 X 4 ■̂ S Xf,
As ^7 X 9 '^ 3
A4 X 10 -’fl! ^ 1 3

Column
total c, C2 C3

Grand 
total (GT)

(b) Obtain the row totals, (fli = Xj + Xj + X3) 
Obtain the column totals (C, = x, + X4 + X7 + xjq) 
Obtain the^rand total (GT = C, + C2 + C 3 ) ,  check
=  / ? ,  +  /?2 +  f f 3 + / ? 4

(c) Obtain from this table the following totals:

Ix , 2;x^ Iff, SC,

(note 2x = 2ft = XC = GT)

(GT)^
(d) Calculate the 'correction factor', CF = ------(for

12
12 observations).
(e) Calculate the total sum of squares, T

T = 2 x ^ -C F

(f) Calculate the vulcanizates sum of squares. B

2fl^
6 = -------- CF (the 3 is for the number of tests

per vulcanizate).
(g) Form and complete the analysis of variance table.

S o u rc a  o f 
v a ria tio n

D egrees 
o f  f re e d o m

S u m  o f 
sq u a re s

M ean
sq u a re

V a ria n ce
ra tio

B etw een
v u lc a n iza te s 3 B f l/3 3  T -B

B etw een
re p e a ts
w ith in
v u lc a n iza te s 1 2 - 1 - 3  =  8 T - 8

T -B
8

T o ta l 12 -1  =  11 T

(h) Check in variance ratio tables (see appendix D, table 
13) under 3 ,8  degrees of freedom for the significance

8
value.

B
of the — X

3 T - B

(i) If it is significant this indicates there is a significant 
variation in the mean values of the vulcanizates.

15. Crack growth and fatigue testing
15.1 introduction. Failure in vulcanized rubber undergoing 
repeated deformations can occur as a result of crack growth. 
Cracks develop from imperfections in the material and can 
ultimately cause complete severance of an article. Flex 
crack ng resistance can be measured by the De Mattia 
apparatus as described in BS 903 : Parts A10 and A ll. 
Alternatively the fatigue life, or number of cycles to 
failure, can be measured using suitable machines.
15.2 Methods for analysis of results
15.2.1 Use o f linear regression (see BS 903 : Part A 10).
BS 903 : Part A10 recommends that results be quoted 
as the nu t̂^ber of kilocycles flexir\g to reach each successive 
stage or grade of cracking. The grades defined are in order 
of increasing severity of cracking and are given the letters 
A to F.
For certain vulcanizates, especially those based on natural 
rubber, the rate of development of cracks through the 
grades A to F can be adequately represented by a straight 
line which relates the number of kilocycles flexing received 
by the test piece to the grade of cracking produced. If the 
grades A to F are represented by the numbers 1 to 6 then 
this relation has the form

y  = ao + 3i^ • 
where

y  is the number of kilocycles to reach »given grade;
X is the numerical grade of crack pattern; 
d| is the slope of the relationship; 
a(, is the /-intercept.

The slope, aj. wilt represent a 'flexing life per grade' and 
can be used as a measure of the flexcracking resistance of 
the vulcanizate. Similarly, in principle, the intercept do 
would represent an 'initiation' period, which implies that



a certain amount of flexing is required to produce the 
first visible signs of damage whereupon the growth of this 
damage proceeds at a different rate. It is not necessarily 
true true that do represent an initiation period in the 
usually accepted meaning of the phrase. It could be that 
the numbering of the grades A to F should be say from
3 to 8 and that a straight line through the origin is rep­
resentative. However, there is evidence from work with 
different polymers of a long initiation type interval 
followed by a rapid degradation through the cracking 
stages.
BS 903 : Part A10 recommends that at least three test 
pieces be used to characterize a vuicanizate and that mean 
values for each grade of cracking be quoted. When one has 
to compare such means for two different vulcanizates some 
account has to be taken of the variability of the results 
from which each mean value was obtained. As there are 
twelve such mean values the process of comparison is not 
obvious.
Providing that a straight line adequately relates the flexing 
kilocycles to the flex grade then the slope of this line will 
characterize the test piece while the spread of results about 
this line will give a measure of the variability with which 
to judge the difference between two such slopes.
The mathematical procedure to do this is given next. 
Calculation o f  various statistical quantities 
Let the observations be:
No. kilocycles Grade
flexing reached
Ki A. . . .X I
Y2 5....X2
V3 C . . . . X 3

K4 D. . . . X4
Vs  £ . . . . X j

K6  F . . . . X 6

Calculate Zy.  Ex; 2x^; Zxy.

,  (2x)^Calculate 2 x --------- ---  Cn

= C,yy

2x2k 
Z x y --------- = C

n y

where n is the number of grades considered. 
Calculate

C.(a) slope ai  = •
Cii

(b) intercept a© =  y —a^x or
'Ly —ai'Lx

(c) correlation coefficient r  = : and
V ^ll * ^YV

percentage fit = 100r^;
(d) residual variance of regression line

s) =
.yy

1̂1
n - 2

.222

(e) variance of slope =

Use of the calculated values.
(1) The flex life of the test piece is estimated by ai  and 
is quoted in kilocycles per grade. Its confidence limits

(95%) a r e a , ± f ^ ,  
t'li

(2) A guide to the adequacy of the calculated slope
to represent the data can be gained from the correlation 
coefficient r, or better, the percentage fit. If this is less 
than about 80 %, then it is recommended that the 
calculated 'life' or slope be used with caution.
(3) For replicate test pieces giving values of

slope = a i , c i e t c .
and variance of slope = etc.

in order to judge whether these test pieces give identical 
slopes it is essential that the biggest difference between 
two slopes be smaller than

f  VsL where t  =  2.31 for 2[n — 2)
=  8 degrees of freedom.

(4) A representative slope for a given formulation can 
be found by taking the average slope of all test pieces 
from that vuicanizate.

I. e.
3i + b i .... + /?!

=  average life, L
number of test pieces 

(although this is not the most accurate statistical 
estimate)

(5) If L i  and represent average lives for two different 
vulcanizates, the significance of the difference between 
them can be judged by performing a comparison of 
means calculation.

Results to be quoted. It is recommended that the following 
values are given in reporting results for each test piece:

slope ai 
intercept ao 
p>ercentage fit 
residual variance about the 
regression line, s^
variance of the slope, Sg.

or quote Sf and s  ̂ residual 
standard deviation, and 
standard error of slope.

15.2.2 Use o f quadratic regression (see BS 9 0 3 : Part A 1 1). 
The tq^t requires that a standard cut is rr;iade in the test 
piece which is then flexed repeatedly and'the length of the 
growing crack is measured at known intervals of time. The 
initial cut measures about 2 mm and the test is complete 
when its length is about 12 mm.
It is required to know how many flexing cycles are needed 
to cause the initial cut to grow by 2 mm; a further 4 mm; 
a further 4 mm. From a smooth curve of the plot of length 
of crack against number of flexing cycles these values can 
t>e read.
It can be advantageous to interpolate the required values 
from a derived quadratic regression equation, especially 
if adequate calculating equipment is available. To do this, 
the coefficients of the following equations are calculated:

y =  Aq +  A iX  +  A 2X^

where ^
X is the crack length, mm; 
y is the number of kilocycles flexing;
L is the initial cut length, mm.



It is required to find the values of y when x  =  L and L +  2 
{or Z. + 2 and L +  6 or L +  6 and L + 10).
To avoid having to extrapolate select those observations 
which just exceed the range of x under consideration, 
e.g. L to L +  2.

Let these be xi, Xj, / 2 : —• ^n-Vn'
Calculate

Xi + Xj + .... x„ = Lx

x? + xl + ....x2 =

Similarly 2x^ Sx^, Zy, '^^Y, 2xV 
Then calculate the sums of squares.

(2x)2
(b) 2 x ^ -  

I x " -  

2 x ^ -

SxK —

= C,

(2x 2 i 2

n

SxSx^

= C22

= c12

IM !
n

£ x -£ y
n

= C

= c,

ZxV----------- = Ĉ 2n
(c) Use these sums of squares in the following equations 
and solve for A  j and A^.

C\ \ ‘ ^  Cx2‘ — Cyi  

C(2 • 41 + C2 2 = Cy2

(d) Find A q from

hA q = Z / —/I i2x —4;2x^

{e) Calcuiate D = • C^, + A2*

and r  = C,YY

(f) Complete the analysis of variance table:

S o u rc e  o f 
va rian ce

D eg rees  o f 
fre e d o m

S u m s  o f 
sq u a re s

M ean
sq u a re

V arian ce
ra tio

D u e  to D  n - 3
reg ression 2 D D/2 2  T - D

R esid u a l n - 3 T - D iT ~ D ) / { n -3 )

(g) Check the significance of the regression by comparing 
the value obtained for the variance ratio with the 
appropriate value in the statistical tables of variance 
ratio (see appendix D, table 13).
(h) Use the derived response equation to calculate:

(1) K for X = L (or i. + 2 or L + 6);
(2) K forx = Z. + 2 (or Z. + 6 or Z. + 10);
(3) the difference between these y values.

This will represent the number of flexing cycles to cause 
the cut to grow from Z. to Z. + 2 (or /. + 2 to Z. + 6 
or Z. + 6 to Z. + 10).

15.2.3 Fatigue testing. Fatigue testing involves measure­
ment of the number of cycles to failure (the fatigue life) 
of test pieces subjected to repeated deformations. A British 
Standard for tension fatigue is in preparation and this will 
give general guidance on the presentation and interpretation 
of results. A brief description of statistical aspects of 
fatigue behaviour is given below together with a simple 
method for the assessment of results.
The inherent variability in fatigue life is very much 
greater than in other strength properties, such as tensile 
strength; this reflects the greater sensitivity of fatigue 
life to factors which influence failure, such as flaw si2e.
The extent of the variation depends on vulcanizate 
compositions, particularly the type of rubber used; for 
example, the overall variation for vulcanizates of natural 
rubber (NR) or isoprene rubber (IR) is typically two-fold 
or less, whereas for styrene-butadiene rubber (SBR) or 
butadiene rubber (BR) it can be an order of magnitude 
or more. The 'nature of the distribution' is also influenced 
by vulcanizate details and no single distribution is 
applicable to all rubbers. Thus for NR or IR vulcanizates. 
the distribution of fatigue lives often approximates to 
a Normal (Gaussian) distribution; for SBR, on the other 
hand, the distribution of fatigue lives tends to be markedly 
skew, but that of their logarithms may be essentially 
Normal. In view of these differences in behaviour and the 
complexities they present, particularly in relation to the 
treatment of blends of different rubbers (which are very 
widely used in practice), it is likely that a generally 
applicable method of analysis, which may be along the 
simple lines given below, will be recommended In the 
proposed standard for tension fatigue.
For each set of tests, the following should be reported:

(a) number of test pieces used (minimum 6);
(b) individual fatigue lives in ascending order of
magnitude;
(c) median fatigue life;
(d) measure of dispersion.

It is important that some measure of dispersion is quoted. 
Apart from standard techniques described earlier in this 
guide, use of the ratio of highest to lowest life has provided 
a simple measure that has been found useful in the 
particular area of fatigue testing. In principle this ratio 
involves some disadvantages, but for the numbers of test 
pieces that are normally involved it has been found to 
correlate closely with the coefficient of variation and 
is much easier to handle. Due to the complexity of fatigue 
testing and the differences in the behaviour of the various 
rubbers, care should be taker^in applying statistical tests 
described earlier in this guide. Appropriate statistical tests 
are available (e.g. distribution free tests) but are beyond the 
scope of this guide.
Low results should be disregarded if (and only if) there 
is positive non-statisflcal evidence that they are unrep­
resentative (e.g. the presence of an abnormally large flaw 
in the fracture surface which is clearly attributable to 
a fault in test piece preparation). *
For NR and IR, six test pieces should give a representative 
measure of the median but for SBR and rubbers that 
behave similarly 12 test pieces are likely to be required, 
particularly when only one strain cycle is used. Apart 
from the general reasons given earlier in this guide, the



median provides a more satisfactory measure of central 
tendency than the arithmetic mean for rubbers such as SBR 
the (fatigue) lives of which follow a skew distribution. 
Attention is drawn to the lowest fatigue life since this 
Is often primarily of concern from a service viewpoint.

16. Resistance to low temperatures (see BS 903 : 
Part A13)
16.1 Use of cubic regression to give better estimates of 
regidlty modulus. The test determines the apparent rigidity 
modulus of rubbers at different temperatures. Practice 
usually covers the temperature range from — 75 °C to 
+ 15 °C. Most technologically useful materials change 
from the 'frozen' solid state to the 'rubbery' state some­
where In this region. Their modulus decreases from about 
10000 Pa to about 1 Pa. The shape of the modulus versus 
temperature curve is sigmoid.
Often, the fitting of a cubic regression equation to the 
results gives a better estimate of the temperatures for 
given moduli. The calculations are as follows.
It is required to determine the values of the constants 
in the following equation and to check their usefulness 
or significance:

/  = Ao +  A i X + A i X ^  +  AjX^

where
X is the apparent rigidity modulus; 
y is the temperature.

Data points available are Xi/,; X2K2; •—
(a) Obtain the totals

2 x \  Zx^ 2x«, Ey, 2xk,

SxV, 2xV
where

2x = Xj + X2 + .... x „ ;

2xV = x?Ki + x i / 2  + .... ^n /n  etc.

(b) Calculate the sums of squares

=  2x^---------  •

022

C33

C12

=  Ex'*-

= 2 x * -

= Sx'*-

(2x")2 \2

(Ex

SxEx^

C i3  —

C23 -

=

Cy,J -

Sx'*- 

2x’ -  

2 / -  

I x y  —

ExSx^
n

Ex^Ex^
n

(Ey?
n

ExEy
n

'V2

-y3

= 2xV -

= 2 x V -

Ex^Ey
n

Ex^Ey

(c) Use these sums of squares in the following equations,
and solve for >41, 2 and /4 3.

Cii A 1 +  C12 A 2 +  C13 A 3 = Cyl

^12 1 -̂22^2 -̂23 ^ 3  ~  Cy2

Cl3 A 1 + C 23 A2~^C33 A 3 =  Cy3

(d) Find /4efrom

nAo = E y —A i E x —A2Ex'^ — A3Ex^

(e) Calculated = A i  C^ ,+ ^ 2  C,,2 + '^3 ^y 3

and T =  C,yy

(f) Complete the analysis of variance table:

S o u rce  o f  
v a ria tio n

D egrees  o f  
f re e d o m

S u m  o f 
sq u a re s

M ean
s q u a re

V arian ce
ra tio

D ue to D n ~ 4
reg ression 3 D D/3 3  T - D

R esidual n —4 T - D { T - D ) / { n - 4 )

T o ta l n—^ T

(g) Check the significance of the regression by comparing 
the value obtained for the variance ratio with the 
appropriate value in the statistical tables of variance 
ratio.

•  •

(h) Use the derived response equation to calculate the 
(predicted) temperature at any required modulus.

17. Ozone resistance (see BS 903 : Part A23)
Results from this test are sometimes qualitative and some­
times quantitative. Qualitative results can be treated 
as indicated in clause 10. Quantitative results can be treated 
by appropriate statistical techniques, e.g. regression or 
Student's t  test.



Appendix A 

Formulae for easy reference
Meanx = 2x/n 
Standard deviation

Coefficient of variation

V = 100%or 100%
Ixl Ixl

Confidence limits for mean

X ± uoly/n

Least significant differences between two means 

uos/ W I hx + l/rtal 

Confidence limits for mean 

X ± ts!\/n  (where v — n — 1)

Pooled estimate of standard deviation

Where the standard deviation is 
accurately known

£(x, -Xi )^  + 2(x2 —X2)'
+ rtj ~ 2

■
Z x \ -  (Sxt)^Mi + Z x \  -  (2 x2)Vn2 

rti + /?2 ~  2

Least significant difference between two means

tsyJ(Mnx + I/hj) (where I' = n i - \ - n i  — 2)

Where the standard deviation is 
estimated from the sample(s)
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Appendix C

Glossary of statistical terms and symbols
D e fin it io n

In rubber testing, the aggregate of all test readings on a single property which 
could be made on the rubber under investigation.

T erm

population (or universe)

sample

sample size, n 

varlate,x

2

arithmetic mean (mean), x 

mean deviation

standardized normal deviation, u 

Student's 'f', t

degrees of freedom, y
(sometimes referred to as 0)

precision

confidence limits
(for a mean)

least significant difference
(between two sample means)

levei of significance

factor

interaction

The test readings actually made, usually selected to constitute a random 
selection from the population.

The number of test readings in the sample.

An individual test reading, subject to variation.

The sum o f ...

The sum of the readings, divided by their number.

The arithmetic mean of the deviations of individual readings from the 
mean, neglecting their sign.

A variate, Normally distributed about a mean at zero and with unit standard 
deviation. (For tables of the Normal (Gaussian) distribution, see textbooks 
and appendix D.)

The ratio of a sample mean. Normally distributed about a mean at zero, to 
the estimate of its standard deviation. (For tables of the distribution see 
textbooks and appendix D.)

The number of independent differences between the readings available for 
an estimate of standard deviation. For example, in estimating the standard 
deviation from a sample of n readings, there are only (/7 — 1) independent values 
of (x —x), the last value being determined by the requirement that 2(x — x) = 0,
i.e. one degree of freedom has been 'lost' in the calculation of the mean x.

The closeness of an estimate, usually expressed as 95 % confidence limits.

The range of values about the sample mean within which the true mean can, with 
a certain degree of confidence, be stated to lie.

A value which the difference between two sample means must exceed in order 
to establish, with a certain small risk of error, that the true means in fact differ.

The probability of error associated with significance tests. (See least significant 
difference.)

One of the variables in a planned experiment whose effect it Is desired to 
estimate, and which can be controlled at a specified value.

When the effect of one variable is different at different levels of a second 
variable, then there is said to be an interaction between the two variables.



T e rm

factorial experimental design

effect

correlation coefficient, r  =

D e fin it io n

A plan of experiments in which an experiment is done at each of the possible 
combinations of levels of the factors.

When a factor is only considered at two levels, the effect of the factor is; 
average result at the higher level of the factor, 
minus result at the lower level of the factor.

Six -  x) {y -  y) where — 1 <  + 1

percentage fit 

residual

residual standard deviation

variance of population

variance of sample

standard deviation of population, a 

standard deviation of sample, s 

response

independent variable 

standard error

A measure of the extent to which the two variables in question vary together.

A measure of the proportion of variation in the response which is accounted 
for by variation in the other variables. Equal to 100 r^.

When the best relationship has been fitted, the difference between the observed 
value of the response and the predicted value of the response corresponding 
to the same values of the Independent variables, is called the residual.

This is simply the standard deviations of the residuals, and is a measure of the 
scatter of the points about the fitted equation.

The arithmetic mean of the squares of the deviations of the population 
measurements from the arithmetic mean of the population.

The sum of the squares of the deviations of the sample observations from the 
arithmetic mean of the sample, divided by n — 1.

The square root of the variance of the population.

The square root of the variance of the sample.

Any property which we are measuring and attempting in some way to optimize, 
and which Is thought to be dependent on some other variables is termed a 
response (e.g. tensile strength, hardness).

A variable which is thought to be causing variation In a response variable, or which 
can be used to account for variation in a response variable.

A measure otthe accuracy of the estimate of a parameter.



Appendix D 

Statistical reference tables

Table 11. The Normal (Gaussian) distribution function
Single sided Double sided

U F(U) U F(UI U G(U)

-2 .6 0.005 0.1 0.540 0.0 0.000
-2 .5 0.006 0.2 0.579 0.1 0.080
-2 .4 0.008 0.3 0.618 0.2 0.158
-2 .3 0.011 0.4 0.655 0.3 0.236
-2 .2 0.014 0.5 0.692 0.4 0.310
-2 .1 0.018 0.6 0.726 0.5 0.384
-2 .0 0.023 0.7 0.758 0.6 0.452
-1 .9 0.029 0.8 0.788 0.7 0.516
-1 .8 0.036 0.9 0.816 0.8 0.576
-1 .7 0.045 1.0 0.841 0.9 0.632
-1 .6 0.055 1.1 0.864 1.0 0.682
-1 .5 0.067 1.2 0.885 1.1 0.728
-1 .4 0.081 1.3 0.903 1.2 0.770
-1 .3 0.097 1.4 0.919 1.3 0.806
-1 .2 0.115 1.5 0.933 1.4 0.838
-1 .1 0.136 1.6 0.945 1.5 0.866
-1 .0 0.159 1.7 0.955 1.6 0.890
-0 .9 0.184 1.8 0.964 1.7 0.910
-0 .8 0.212 1.9 0.971 1.8 0.928
-0 .7 0.242 2.0 0.977 1.9 0.942
-0 .6 0.274 2.1 0.982 2.0 0.954
-0 .5 0.308 2.2 0.986 2.1 0.964
-0 .4 0.345 2.3 0.989 2.2 0.972
-0 .3 0.382 2.4 0.992 2.3 0.978
-0 .2 0.421 2.5 0.994 2.4 0.984
-0.1 0.460 2.6 0.995 2.5 0.988
-0 .0 0.500 3.1 0.999 2.6 0.990

F( U) -  shaded area
: probability (u<U)

-U +U 
G (U shaded area

= probability (-U<u<*U)

Figure 12. Normal (Gaussian) distribution function



Table 12. Table of percentage points of Student's f-distribution
D eg rees  o f  
f r e e d o m  (7)

F o r  u se  in  d o u b le -s id e d
s ig n if ic a n ce  te s t
(o r  c o n f id e n c e  in te rv a l)

F o r  u s e  in  s in g le ^ id e d
s ig n if ic a n ce  te s t
(o r  c o n f id e n c e  in te rv a l)

P e rc e n ta g e  p o in t P e rc e n ta g e  p o in t

1 % 5 % 10 % 1 % 5 % 1 0 %

1 6 3 .6 6 1 2 .71 6 .31 3 1 .8 2 6 .3 1 3 .0 8

2 9 .9 2 4 .3 0 2 .9 2 6 .9 7 2 .9 2 1 .8 9

3 5 .8 4 3 .1 8 2 .3 5 4 .5 4 2 .3 5 1 .6 4

4 4 .6 0 2 .7 8 2 .1 3 3 .7 5 2 .1 3 1 .5 3

5 4 .0 3 2 .5 7 2.02 3 .3 7 2.02 1 .4 8

6 3.71 2 .4 5 1 .9 4 3 .1 4 1.94 1 .4 4

7 3 .5 0 2 .3 6 1 .8 9 3 .0 0 1 .8 9 1 .4 2

8 3 .3 6 2.31 1.86 2 .9 0 1.86 1 .4 0

9 3 .2 5 2 .2 6 1 .8 3 2 .8 2 1 .8 3 1 .3 8

10 3 .1 7 2 .2 3 1.81 2 .7 6 1.81 1 .3 7

11 3.11 2.20 1 .8 0 2 .7 2 1 .8 0 1 .3 6

12 3 .0 5 2 .1 8 1 .7 8 2.68 1 .7 8 1 .3 6

13 3.01 2 .1 6 1 .7 7 2 .6 5 1 .7 7 1 .3 5
14 2 .9 8 2 .1 5 1 .7 6 2 .6 2 1 .7 6 1 .3 5

15 2 .9 5 2 .1 3 1 .7 5 2 .6 0 1 .7 5 1 .3 4

16 2 .9 2 2.12 1 .7 5 2 .5 8 1 .7 5 1 .3 4

17 2 .9 0 2.11 1 .7 4 2 .5 7 1 .7 4 1 .3 3

18 2.88 2.10 1 .7 3 2 .5 5 1 .7 3 1 .3 3

19 2.86 2 .0 9 1 .7 3 2 .5 4 1 .7 3 1 .3 3

20 2 .8 5 2 .0 9 1 .7 2 2 .5 3 1 .7 2 1 .3 3

2 5 2 .7 9 2 .0 6 1.71 2 .4 9 1.71 1 .3 2

3 0 2 .7 5 2 .0 4 1 .7 0 2 .4 6 1 .7 0 1.31

4 0 2 .7 0 2.02 1.68 2 .4 2 1.68 1 .3 0

6 0 2.66 2.00 1 .6 7 2 .3 9 1 .6 7 1 .3 0

120 2 .6 2 1 .9 8 1.66 2 .3 6 1.66 1 .2 9
2 .5 8 1 .9 6 1 .6 4 2 .3 3 1 .6 4 1 .2 8

Table 13. 5 % points of F distribution
\ x i
7 2  \

1 3 5 7 8 10 12 2 4

1 1 6 1 .4 2 1 5 .7 2 3 0 .2 2 3 6 .8 2 3 8 .9 2 4 1 .9 2 4 3 .9 2 4 9 .0 2 5 4 .3
3 1 0 .1 3 9 .2 8 9 .0 1 8 .8 9 8 .8 5 8 .7 9 8 .7 4 8 .6 4 8 .5 3
5 6 .6 1 5 .41 5 .0 5 4 .8 8 4 .8 2 4 .7 4 4 .6 8 4 .5 3 4 .3 6
7 5 .5 9 4 .3 5 3 .9 7 3 .7 9 3 .7 3 3 .6 4 3 .5 7 3 .41 3 .2 3
8 5 .3 2 4 .0 7 3 .6 9 3 .5 0 3 .4 4 3 .3 5 3 .2 8 3 .1 2 2 .9 3

10 4 .9 6 3 .71 3 .3 3 3 .1 4 3 .0 7 2 .9 8 2 .9 1  • 2 .7 4 2 .5 4
12 4 .7 5 3 .4 9 3 .1 1 2 .91 2 .8 5 2 .7 6 2 .6 9  • 2.51 2 .3 0
2 4 4 .2 6 3 .01 2 .6 2 2 .4 2 2 ^ 6 2 .2 5 2 .1 8 1 .9 8 1 .7 3
oe 3 .8 4 2 .6 0 2.21 2.01 1 .9 4 1 .8 3 1 .7 5 1 .5 2 1.00
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This B ritish  S ta n d a rd , hav ing  b e e n  p re p a re d  u n d e r  th e  d ire c tio n  o f 
th e  R u b b e i In d u s try  S ta n d a rd s  C o m m itte e ,  w as p u b lis h e d  u n d e r  
th e  a u th o r i ty  o f  th e  E x e c u tiv e  B o ard  o n  31 A u g u st 1 9 7 6 .
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C o p y rig h t
Users of British Standards are reminded that copvright subsists in 
all BSI publications. No part of this publication may be reproduced 
in any form without the prior permission in writing of BSI.
This does not preclude the free use, in the course of implementing 
the standard, o f necessary details such as sym bols and size, type or 
grade designations. Enquiries should be addressed to the 
Publications Manager, 101 Pentonville Road, London N1 9N 0 
(Telephone 01 -837 8 8 0 1 ; Telex 23218).

C o n tra c t  re q u ire m e n ts
Attention is drawn to the tact that this British Standard does not 
purport to include all the necessary provisions of a contract.

R e v is io n  o f  B r itish  S t a n d a r d s
British Standards are revised, when necessary, by the issue either 
of am endm ent slips or of revised editions. It is  im p o r ta n t  th a t  
u s e r s  o f  B r itish  S t a n d a r d s  sh o u ld  a s c e r t a in  t h a t  th e y  a r e  in 
p o s s e s s io n  o f  th e  la t e s t  a m e n d m e n ts  o r  e d it io n s .

T h e  fo llo w in g  BSI re fe re n c e s  re la te  to  th e  w o rk  o n  th is  s ta n d a rd : 
C o m m itte e  re fe re n c e s  R U C /1 0 , R U C /1 0 /4 , R U C /1 0 /4 /3  
D ra ft fo r  c o m m e n t 7 2 /5 4 6 6 2 D C

Cooperating organizations
T h e  R u b b e r  In d u s try  S ta n d a rd s  C o m m itte e ,  u n d e r  w h o se  s u p e r ­
v ision  th is  B ritish  S ta n d a rd  w as p re p a re d ,  c o n s is ts  o f  re p re s e n ta tiv e s  
fro m  th e  fo llo w in g  G o v e rn m e n t d e p a r tm e n ts  a n d  s c ie n tif ic  a n d  
in d u s tr ta t o rg a n iz a tio n s :

B ritish  A sso c ia tio n  o f  S y n th e t ic  R u b b e r  M an u fac tu re rs  
B ritish  R u b b e r  M a n u fa c tu re rs ' A sso c ia tio n  L td .
D e p a r tm e n t o f  In d u s try
M alaysian  R u b b e r  P ro d u ce rs  R ese a rch  A sso c ia tio n  
M in istry  o f  D e fen ce
R u b b e r a n d  P las tics  R ese a rch  A sso c ia tio n  o f  G re a t B rita in  
R u b b e r  G ro w e rs ' A sso c ia tio n  

* S o c ie ty  o f  M o to r  M a n u fa c tu re rs  a n d  T rad e rs  L td .

T h e  G o v e rn m e n t d e p a r tm e n t  a n d  s c ie n tif ic  a n d  in d u s tr ia l 
o rg a n iz a tio n s  m a rk e d  w ith  a n  a s te r isk  in  th e  a b o v e  lis t, to g e th e r  
w ith  th e  fo llo w in g , w e re  d ire c t ly  re p re s e n te d  o n  th e  c o m m itte e  
e n t ru s te d  w ith  th e  p re p a ra t io n  o f  th is  B ritish  S ta n d a rd :

B ritish  R ailw ay s  B o ard  
C h em ica l In d u s tr ie s  A sso c ia tio n  
D e p a r tm e n t o f  th e  E n v iro n m e n t 
E lec tric a l R esearch  A sso c ia tio n  
In s t i tu t io n  o f M ech an ica l E ng ineers  
I n s t i tu t io n  o f M un icp ia l E n g in ee rs  
I n s t i tu t io n  o f  W ater E n g in ee rs  a n d  S c ie n tis ts  
N a tio n a l C o llege  o f  R u b b e r  T e c h n o lo g y  
P o s t O ffice
R o y a l I n s t i tu te  o f  C h em istry  
In d iv id u a l e x p e r ts
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