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IN TRO D U CTIO N

Rubber tree {Hevea brasiliensis Muell. Arg.) is the only commercial 

source of natural rubber and the species is well suited to equatorial region with 

plenty of well distributed rainfall and minimum fluctuations in temperature. 

Indonesia, Thailand, Malaysia, China and India are the major countries in the 

world growing natural rubber. In all these countries, rubber plantations are grown 

under rainfed conditions. In India, the traditional region of rubber cultivation is 

the southern part of the west coast extending from Kanyakumari (8 ° 15’ N) to 

Mangalore (12° 52’ N). To cope with the increasing global demand for natural 

rubber and considering the limited scope of expansion of the crop in its favoured 

traditional belt, attempts are made to extend its cultivation to agroclimatically 

marginal areas (Sethuraj et a l, 1989). But major environmental constraints are 

prolonged soil moisture stress and high temperatures prevailing in such marginal 

areas in the East and West of peninsular India. While soil and atmospheric 

drought and high temperature are major environmental factors limiting growth 

and yield in Hevea in nontraditional areas, incidence of unexpected droughts 

often pose problems, even in the traditional area. Severe droughts were 

experienced in the traditional areas during 1982-83 and 1986-87 (Ouseph, 1987). 

Understanding of the effects of drought on the crop and evolving drought tolerant 

clones are critical to realize better productivity in the traditional area and to 

extend the crop to drought prone nontraditional areas.

Early detection of stress resistant traits in the available genetic 

resources is useful in any crop, especially in a perennial crop like rubber. But the 

very narrow genetic base of the cultivated Hevea species resulted from the small 

genetic stock introduced by sir Henry Wickham and the unidirectional selection 

for yield over years in the cultivated clones limits the availability of wide genetic 

resources in Hevea. Hence for any further crop improvement programme.



widening of this narrow genetic base is essential which can be achieved by 

introgression of appropriate alien genes from the wild progenitors. Several 

investigations on drought resistance in crop plants have led to the observation that 

wild relatives of cultivated species are drought tolerant (Shimshi et al, 1982). 

Rosenow et aL (1983) reported better performance of wild cotton germplasm than 

commercial germplasm under water stress condition. By proper evaluation and 

research in these materials, novel candidate genes coding for stress tolerance traits 

can be identified which can be utilized in genetic improvement programmes 

(Paroda, 1993).

The wild genotypes of Hevea collected through an expedition 

organized by the International Rubber Research and Development Board 

(IRRDB) in 1981 into the primary center of origin of the crop, the Amazon 

forests, is a good source of genetic variability. Around 5000 genotypes of this 

wild Brazilian germplasm are being conserved in India. The exploration covered a 

wide range of agroclimatic areas in the three Brazilian states of Acre (AC), 

Rondonia (RO) and Mato Grosso (MT). Ong et al. (1983) reported the presence 

of vigorous and high yielding rubber trees in the states of Acre and Rondonia with 

better quality rubber in Acre. The agroclimatic conditions in Mato Grosso and 

Acre shows the possibility of selection of genotypes having drought tolerance 

whereas Rondonia state is predominantly of marshy lands. Hence including 

genotypes from Mato Grosso and Acre for drought tolerance screening is a right 

approach in Hcvea breeding for drought-resistance.

The best method for drought tolerance breeding is to subject the 

genotypes to drought conditions and select the ones least affected in growth/yield 

performance. Hevea, being a perennial tree species, requires more than 30 years 

for the above procedure and hence it is not a feasible proposition. Many 

morphological, physiological, anatomical and biochemical indices have shown 

their relationship to drought tolerance in earlier studies in many crops including



rubber. Utilising these indices, in Hevea seedlings under induced water stress 

during summer periods, we can effectively screen the germplasm materials within 

a short period of time to identify genotypes with drought tolerance. The genotypes 

if any, so isolated can be utilized in further breeding programmes.

With this background, the present study was undertaken with the 

following objectives,

1. Preliminary screening for drought tolerance in 99 wild Hevea germplasm 

based on cell membrane thermostability and assessing the genetic 

variability among these genotypes for this trait.

2. Studying the genotypic response and assessing the nature and extent of 

genetic variability for various physiological characters among the selected

. genotypes under various levels of induced water stress.

3. Assessing the nature and extent of genetic variability among the selected 

genotypes for various drought related morphological, biochemical and 

anatomical characters.

4. Assessing the degree of association among characters studied.

5. Assessing the genetic divergence and clustering the genotypes.

6 . Identifying superior genotypes based on rank sum obtained for characters 

selected on the basis of parametric relationship with drought tolerance.
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REV IEW  O F LITER A TU R E

Crop plants rarely attain their full genetic potential for yield because of 

the limitations imposed by the environment. Among the various environmental 

stresses, drought stress is the one, which has deleterious effects on yield of 

economically important crops. One approach to improve crop performance in 

water-limited environment is to select for genotypes that have improved growth 

and yield in this environment. This approach has been proved partially successful, 

but difficult due to the variability of rainfall and the polygenic nature of drought 

avoidance and intrinsic tolerance traits. A complementary approach to improve 

plant performance in water-limited environments involves the identification and 

selection of traits that contribute to drought avoidance, drought tolerance or water 

use efficiency. However, most of these traits are complex and our understanding 

of their interactions and control is limited. Moreover, drought often interacts with 

other stresses, particularly temperature extremes, high light intensities and with 

biotic stress, making breeding for drought resistance/tolerance much more 

complex. Hence, plant responses to water deficit have to be analysed 

systematically by identifying traits that relate to drought tolerance followed by 

analysis of the physiological, cellular, biochemical and molecular basis of the 

trait.

2.1 Electrolyte leakage from cell membranes

The cell membrane is a central physiological site mediating the effect 

of various environmental stresses on the plant cell. The cell membrane 

permeability which is usually measured by the electro conductivity measurement 

of the electrolyte leakage has been widely used as a measure of drought and heat 

tolerance in sorghum (Sullivan and Ross, 1979), soyabean (Martineau et a l, 

1979), wheat (Blum and Ebercon, 1981), turf grass (Wallner et al., 1982), potato 

(Bansal and Nagarajan, 1983; Nagarajan and Bansal, 1986), and in Hevea



(Rajagopal et al ., 1988). The interrelationship between cell membrane stability 

and lipid peroxidation for identifying drought tolerant coconut cultivars has been 

studied, by Chempakam et al. (1993) who identified that lipid peroxidation affects 

normal cell functions causing damage to the cell constituents leading to increased 

cell permeability and leakage. Kurup et al. (1993) observed low leaf water 

potential and high electrolyte leakage in the drought susceptible coconut 

genotypes. Nair et al. (1995 and 1999) studied the effect of heat and drought 

stress in various Hevea clones by a modified electrolyte leakage method and 

suggested that the method is useful for evaluation of large number of Hevea 

genotypes for tolerance to combination of heat and water stresses. Using a 

modified protocol Hussain et al. (1995) screened heat tolerant and sensitive 

varieties in Brassica for determining membrane thermostability.

Cell membrane stability of leaf tissues and its relationship with drought 

tolerance in Arachis was studied by Deb et al. (1996). Evaluating various 

screening techniques for drought tolerance in wheat (Ashraf et al., 1996) 

observed cell membrane stability test to be the most reliable and potentially useful 

one for screening at early growth phase. Measurement of electroconductivity of 

leaf diffusate was found adequate for rating drought tolerance and to evaluate 

invisible injury caused by drought or heat stresses in legumes (Grzesiak et al., 

1996). In chineese cabbage, Shao Bo et al. (1996) observed a highly negative 

correlation of electrolyte leakage rate of cells from leaf blades and heat damage 

index with heading rate under high temperature. In spring wheat, Xu Ruqiang 

et al. (1997) suggested that membrane thermostability was a better indicator of 

heat tolerance in the field than susceptibility index. In pearl millet Howarth et al. 

(1997) reported significant correlation between the ability of membrane 

thermostability to acclimate and seedling survival in the field.

Decreased membrane stability as a result of moisture and heat stress in 

wheat was reported by Sairam et al. (1997). Marcum (1998) identified cellular



membrane thermostability test as an ideal method for screening large numbers of 

kentucky bluegrass genotypes for heat tolerance, which is rapid and accurate with 

minimum space requirement. In pepper, changes in cell membrane permeability 

have been used as criteria for determining the heat tolerance (Yuangan et al., 

1998). In Hevea Samarappuli and Yogaratnam (1998) described the role of leaf 

tissue membrane thermostability as an adaptation to drought and global warming.

2.2 Traits associated with drought tolerance

Crop plants adapt to stress conditions by the intervention of several 

inductive physiological, morphological, biochemical and anatomical mechanisms, 

which are more or less specific to species (Hanson, 1980; Kramer, 1983). It is 

important to understand the major mechanisms associated with drought tolerance 

in order to identify reliable parameters and develop effective screening techniques 

for screening germplasm accessions as well as progeny firom breeding 

programmes.

2.2.1 Physiological changes induced by water stress

Genetic approach to drought resistance by selecting for yield under 

stress is a possible but a prolonged and problematic procedure. Recent 

developments in the understanding of the physiological responses of plants to 

water stress and their associations wdth plant productivity allow to embark upon 

experimental selection programmes that employ physiological selection criteria 

for drought resistance. This is supported by the recent developments of rapid 

selection techniques for several physiological components of drought resistance. 

Studies suggest that no singular drought adaptive trait is predictive of plant 

response to stress (Nass and Sterling, 1981) and hence multiple physiological 

selection criteria are required.



2.2.1.1 Stomatal conductance, transpiration rate, leaf water potential and soil
water potential

Extensive reviews are available on the controlling effect of stomata in 

the regulation of the water balance of plants (Hsiao, 1973). A number of 

environmental factors have been shown to influence stomatal response (Burrows 

and Milthorpe, 1976). In the literature, the stomatal regulation is described in 

terms of conductance rather than resistance and low conductance has been 

considered as an important trait for improving yield under water limited 

environment. Changes in conductance cause changes in 'F leaf by altering the rate 

of transpiration. In orange trees, leaves that had undergone severe water stress had 

lower leaf water potentials, for a given relative water content, than unstressed 

leaves (Fereres et a i, 1979). Effect of leaf water potential on the fruit quality of 

satsuma has been reported by Maotani and Machida (1980) and the effect of soil 

water potential on cocoa tree growth has been studied by Machado and Alvim 

(1981).

When young rubber trees were subjected to water stress, the net 

photosynthesis and stomatal conductance showed a sigmoid shaped declining 

curve as a function of increasing water stress situation (Ceulemans et a i, 1983). 

The increasing soil dehydration reduced the leaf water potential, transpiration and 

photosynthesis and increased the stomatal resistance in young Hevea (Conceicao, 

1985). Effect of water stress on transpiration, photosynthesis, leaf water potential 

and stomatal conductance has been extensively studied in various fruit-crops such 

as apple (Lankes, 1985), Olea europaea (Jorba et a i, 1985), almond, peach and 

plum (Dettori, 1985). Bannister (1986) observed that the maximum water 

potentials observed in wilted shoots of some trees were highly correlated with 

their drought resistance, with the most sensitive species showing wilting at the 

highest water potentials and the most resistant at the lowest. Studies conducted in 

olive (Tombesi et al., 1986) and peach trees (Gamier and Berger, 1987) revealed



a negative influence of water stress on photosynthesis, leaf water potential and 

stomatal conductance. Rajagopal et al. (1988) have suggested that leaf water 

potential measurement can serve as a rapid method of screening for drought 

tolerance in coconut plantations. In coconut the positive relation between seasonal 

and daytime fluctuations in leaf diffusive resistance and drought resistance also 

have been well established (Bai et a l ,  1988). Influence of soil moisture status 

during diy and wet periods on yield, yield components and water relations was 

studied in Hevea clones by Devakumar et al. (1988). The results indicated that 

low transpiration coefficients are associated with high yields and drought 

tolerance in clones RRII 105 and G1 1. Similar response of Hevea clones to water 

stress has also been confirmed by Rao et al. (1988).

Decreased transpiration under water stress was noticed in cocoa 

accessions (Balasimha and Rajagopal, 1988). Similarly increased stomatal 

resistance and reduced transpiration rate and leaf water potential were noticed in 

water stressed coconut palms (Rajagopal et al., 1989). In evergreen sclerophylls 

leaf water potential and solute water potential were low during drought period 

(Rhizoponlou and Mitrakos, 1990). Chandrashekar et al. (1990) observed that in 

Hevea clones grown in the non-traditional region the extreme soil and 

atmospheric moisture deficits resulted in very low plant moisture status and high 

plugging indices and the stomatal conductance and transpiration rates were also 

severely inhibited throughout the day. While comparing the responses of two 

Hevea cloncs RRII 105 and RRII 118 to soil moisture status, Rao et al. (1990a) 

observed that the clone RRII 105 was more tolerant of drought due to higher 

stomatal resistance, higher leaf water potential and lower transpirational water 

loss. Similar observations were noticed in cocoa by Balasimha et al. (1991), in 

coconut by Shivashankar et al. (1991) and in Hevea by Mohan Krishna et al. 

(1991), Shivashankar et al. (1993) used leaf water potential and stomatal



resistance measurements for comparing the drought tolerance of the hybrid 

progenies resultant of three cross combinations in coconut.

Reduction in the rate of transpiration was associated with reduction in 

predawn leaf water potential in Prunus persica trees under soil drought (Tavares 

et al., 1994). Chandrashekar (1997) used the parameters soil moisture, leaf water 

potential and stomatal conductance, in order to study the performance of certain 

Hevea clones exposed to atmospheric and soil moisture stress under subhumid 

climatic conditions. Repeilin et al. (1997) suggested that leaf water status might 

be usefiil as early selection criteria for drought resistance in coconut. Valancogne 

et al. (1997) identified predawn leaf water potential as a water stress indicator for 

irrigation scheduling and for irrigation trials while conducting experiment in 

different fhiit tree species. Significantly higher stomatal conductance to water 

vapour was noticed in well watered ponderosa pine seedlings by Zhang et al.

(1997). Vijayakumar et al. (1998) observed the indirect effect of stomatal 

resistance on photosynthesis while studying the irrigation requirement of rubber 

trees in the subhimid tropics. Low values of stomatal resistance were recorded in 

plants under higher water regimes.

2.2.1.2 Chlorophyll fluorescence

Chlorophyll fluorescence serves as an intrinsic indicator of the 

photosynthetic reactions in the chloroplasts of green plants. Studies revealed that 

chlorophyll lluorescence analysis is a sensitive indicator of stress induced 

limitations of photosynthesis. High temperature treatment causes a variety of 

fluorescence changes; at elevated temperatures the dark fluorescence level, Fq, is 

increased several-fold (Schreiber and Berry, 1977). Following heat treatment, 

there is a decrease in variable fluorescence, Fv, as measured upon illumination at 

room temperature (Santarius and Muller, 1979).



In cocoa accessions, Balasimha (1992) noticed a decrease in the Fv 

values during the drier months as compared to other months. The Fq was 

significantly higher in susceptible accessions showing that PS II was affected to a 

greater extent and Fm and Fy values were lower in them. In Nicotiana tabacum, 

Eggenberg et al. (1995) observed that the total variable fluorescence (F^- Fo) of 

the resistant cultivars were greater than those of the susceptible cultivars. Upon 

rewatering, fluorescence signals showed a reverse trend back to normal, 

appreciably faster in the resistant cultivars than in susceptible cultivars.

Chlorophyll fluorescence parameters as predictive test of drought 

tolerance have been used in wheat by Al-Hakimi et al. (1995). The fluorescence 

parameter which differed the most in its response to drought stress between the 

drought resistant and drought susceptible Nicotiana tabacum cultivars was Fq 

which increased substantially in drought susceptible cultivars (Reusburg et a l,

1996). Maury et al. (1996) considered F̂ /Fm values for assessing the 

photochemical responses of two sunflower genotypes to drought acclimation. 

Chlorophyll fluorescence analysis of drought stressed plants of transgenic tobacco 

showed a higher photochemical quenching and a higher ratio of variable 

fluorescence over maximal fluorescence (FyFn,) indicating a more efficient 

photosynthesis (Pilon-Smits et al., 1998). Chlorophyll fluorescence was used as a 

selection criterion for grain yield in durum wheat by Araus et al. (1998) and 

observed that in the driest environment the mean values of Fv/Fm and F^ were 

decreased and Fo was increased.

. 2.2.2 Morphological changes induced by water stress

2.2.2.1 Changes related to leaf and stem

Extension growth is generally a more sensitive process than carbon 

dioxide assimilation during water stress (Boyer, 1970; Hsiao, 1973). Along with 

this a reduction in leaf area, increased rates of senescence of older leaves.



premature abscission, leaf rolling and folding which in turn reduce the 

transpiration, occur as a result of water deficit condition. Streitberg (1975) 

noticed enhanced leaf formation and increased individual and total leaf areas in 

apple trees grown under higher irrigation levels and reduced light intensity. A 

reduced shoot extension rate and shrinking of shoots in the drought affected apple 

trees were reported by Powell (1976).

In coconut, intensity of drought has been assessed by the drought 

tolerance index (Pomier and de Taffin, 1982) or by the aridity index (Rao, 1985) 

based on the reduction in the number of leaves and nuts during drought 

situations. Joly and Hahn (1989) observed a reduction in leaf area in cocoa plants 

as an adaptive mechanism to circumvent the periods of drought. In Hevea clones, 

Chandrashekar et al. (1990) noticed partial defoliation and leaf margin drying 

during the summer periods in the non-traditional rubber growing area of North 

Konkan region. In Coconut, the number of drooping leaves was higher in drought 

susceptible genotypes under water stress condition (Rajagopal et al., 1990). 

Greatest tree height, shoot growth, tree spread and trunk girth were obtained, 

when apple trees were grown under low moisture stress (Chandal and Chauhan, 

1990).

Leaf productivity in white clover cultivars was greatly reduced by 

moisture stress (Barbour et al., 1995), while plant height in maize was 

appreciably reduced by drought (Terrazas et al., 1995). A reduction in leaf area 

and increase in number of dry leaves were reported during dry season in wheat 

genotypes (Cortazar et al., 1995). In apple trees Yang-Sang Jin et al. (1996) 

noticed decrease in shoot length and leaf area and increase in fruit drop and leaf 

fall with increasing water stress. Water deficit treatments significantly reduced 

plant height, leaf area, number of leaves and number of branches in eggplant 

cultivars (Byari and Al-Rabighi, 1996). A reduction in leaf area was noticed in 

different cultivars of Brassica under water stress (Paelik et al., 1996) and in tef.



n.

drought reduced the leaf area through a reduction in leaf size (Shiferaw and 

Baker, 1996) and a reduction in plant height and biomass were also observed. In a 

drought resistant almond cultivar, Herralde et al. (1997) noticed larger leaves and 

a more open and denser crown. Leaf rolling was noticed where rice and wild 

Oryza species were grown under water limiting growth conditions (Yeo et al.,

1997). Moisture deficit resulted in a reduction in plant height and number of 

tillers in tef (Takele, 1997). In Hevea Vijayakumar et al. (1998) noticed 

elimination of foliar injury under sufficient irrigation and Devakumar et al.
, I

(1999) reported changes in canopy architecture as a result of drought.

2.22.2 Root, root’.shoot ratio and dry mater production

In coconut palms under severe moisture stress, dry matter production 

was reduced by 22 per cent as compared with well-watered palms (Rajagopal 

et al., 1989). Fall in plant biomass and yield was reported in drought stressed 

maize by Celiz et al. (1995). Water deficit reduced the fresh and dry weights of 

leaves, stem and roots in egg plant (Byari and Al-Rabighi, 1996). Kobata et al. 

(1996) reported high dry matter production of the shoot in drought resistant rice 

cultivars where water consumption was highly correlated with root density in 

deep soil layers. Response of young tea clones to drought and temperature was 

studied by Burgers and Carr (1996) who observed that the amount of dry matter 

partitioned to leaves, stems and harvested shoots declined by 80-95% by drought 

treatment. F(Tcct of water stress on root response and dry matter production in 

apple trees has been reported by Trunov (1996) and Fernandez et al. (1997).

In field bean and pea, drought treatment resulted in a significant 

decrease in the number of developed lateral roots, their total length and dry matter 

(Grzesiak et al., 1997a). In a laboratory study Gareia and Gonzalez (1997) 

identified length of root as the most appropriate indicator for evaluating water 

stress tolerance in rice varieties. A lower shoot.root ratio was characteristic of



drought resistant field bean cultivars (Grzesiak et al., 1997b). In cowpea, 

distribution percentage of dry matter to roots was higher in the tolerant lines with 

their root weight increasing steadily even at maturity in contrast with a 

considerable decline in the susceptible ones.

2 .223  Effects on Hevea growth and yield

Yield reduction in Hevea during drought period has been undoubtedly 

proved both in the traditional and nontraditional rubber growing areas. Conceicao 

et al. (1986) noticed a reduction in growth and assimilate partitioning when 

Hevea' clones were subjected to a water deficit. Devakumar et al. (1988) 

conducted a study to understand the influence of soil moisture status during dry 

and wet periods on yield components and water relations in four Hevea clones. 

Low dry rubber yield in all the clones was associated with high plugging index 

and low initial flow rate of latex in the dry season. Rao et al. (1988) observed 

significant variations in yield components between the two Heyea clones during 

water stress period. Similarly Rao et al. (1990b) reported significant clonal and 

seasonal variations in yield, yield components and components of water relations 

in two Hevea clones, RRII 105 and RRII118.

Seasonal changes in yield was studied in Hevea clones by 

Chandrashekar et al. (1990) in the non- traditional rubber growing area of north 

Konkan region. They observed that the per tap dry rubber yield in summer months 

was extremely low and uneconomical. In another study on growth reaction of 

Hevea brasiliensis to heat and drought stress under dry subhumid climatic 

conditions Chandrashekar et al. (1996) observed growth only during the monsoon 

period while in dry period there was a reduction in tree girth. Similarly in an 

analysis of growth and drought tolerance in rubber during the immature phase in 

the dry subhumid climate, Chandrashekar et al. (1998) noticed that a large portion 

of growth occurred only in the wet season whereas the growth rates of the clones



during the dry season declined substantially and a decrease in tree girth was 

noticed in most of the clones. Reduction in He\ea growth and yield as a result of 

drought is also reported by Annamalainathan et al. (1998) and Devakumar et al.

(1998).

2.2.3 Biochemical changes induced by water stress

Electrolyte leakage from cell membranes as a result of heat and drought 

stress as well as changes in chlorophyll and epicuticular wax contents are among 

the biochemical parameters considered in the present study. Other biochemical 

changes like accumulation of osmotically active organic solutes in the free or

uncombined form occur when plants are exposed to various environmental
, 1

stresses.

2.2.3.1 Chlorophyll Content and Chlorophyll Stability index

A high chlorophyll stability and a high correlation between chlorophyll 

content, apparent photosynthesis and final yield has been reported in coconut by 

Mathew and Ramadasan (1975). In Zea mays, Alberte et al. (1977) reported 

substantial loss of chlorophyll from the mesophyll chloroplast during water stress. 

In barley, Bhardwaj and Singhal (1981) observed a reduction of chlorophyll a ^  

protein complex in light under water stress. Chlorophyll stability has been used as 

an index of drought resistance in sugarcane (Sharma and Gill, 1981).

Shivashankar et al. (1991) observed reduction in the total chlorophyll 

in the unirrigated coconut palms compared to irrigated palms, as an effect of 

water deficit. Reduction in total chlorophyll content, as a result of water stress is 

reported in different cultivars of Brassica napus by Paelik et al. (1996) and in 

cabbage by Chauhan and Senboku (1996). Moisture stress and temperature stress 

decreased the chlorophyll content and chlorophyll stability index in wheat



(Sairam et al., 1997), maize (Gutierrez et a l, 1998), Hevea (Vijayakumar et al.,

1998) and in Brassica carinata (Voleti et al., 1998).

2.2.3.2 Epicuticular wax content (ECW)

The cuticuiar wax plays an important role in reducing evaporation from 

the leaf surface (Jordan et al., 1983a) and in increasing the yield stability in water 

limited environments (Johnson et al., 1983). Presence of ECW helps in reducing 

cuticuiar transpiration (Rao, 1983), stomatal transpiration and promotes reflection 

of radiant energy by canopies (Lee and Graham, 1986). Conditions favourable for 

high wax production are high radiant energy, high temperature, low humidity and 

increased water stress (Svenningsson and Liljenberg, 1986). Rainfall removes 

ECW from the leaf surfaces (Mayeux and Jordan, 1987). Jefferson et al. (1988) 

observed increased ECW production in drought stressed alfalfa plants and 

identified this as a potential selection criterion for drought resistance. Higher wax 

content had been observed during summer than rainy season in rubber (Rao 

et al., 1988) and in coconut (Kunip, 1989).

In coconut, ECW has been used as an important trait for screening the 

genoty|3es for drought resistance. The drought tolerant palms exhibited higher 

wax content as compared to the susceptible types during peak summer months 

(Rajagopal et al., 1990). An inverse relationship between ECW content and 

transpiration rate has been reported in coconut by Rajagopal et al. (1991). In 

Hevea clones, Vijayakumar et al. (1998) observed increased wax content in leaf 

surface of rainfed plants compared to irrigated plants.

2.2.4 Anatomical traits associated with drought tolerance

Streitberg (1975) noticed that the number of stomata and proportion of 

palisade tissue were lower when apple trees were grown under higher irrigation 

levels. In sorghum, a strong correlation between thick waxy cuticle and drought



resistance has been observed (Blum, 1975). Stomatal frequency, size and 

responsiveness are the factors, which control the water loss of the plants (Parsons, 

1979). In an anatomical comparison of leaves of a diploid and two polyploid 

clones of Hevea brasiliensis, Medri and Lleras (1981) observed that the 

polyploids are more resistant to drought than the diploid. Stomata play an 

important role in controlling the balance between assimilation and transpiration 

(Jordan et a l, 1983b). In coconut, varietal differences in the stomatal density has 

been reported by Rajagopal et al. (1990). In a study on comparative bark anatomy 

of drought tolerant and susceptible Hevea clones, Premakumari et al. (1993) 

observed significant differences in the characters such as height and width of 

phloic rays, height:width ratio of phloic rays, the proportion of soft bast to total 

bark thickness and proportion of latex vessel rows in the soft bast to total number 

of latex vessel rows. While evaluating the drought tolerance of pepper cultivars, 

Lee Woosung et al. (1996) observed a significant positive correlation between

stomatal density and water saturation deficit value.
, 1

Sam et al. (1996) reported the presence of thicker mesophyll and 

spongy parenchyma in tomato and potato cultivars which were more tolerant to 

water and heat stresses. Similarly higher values of leaf thickness, palisade tissue 

thickness, palisade tissue to spongy tissue ratio and stomatal density were noted 

in the drought resistant cultivars of kiwifhiit by Pong Yong Hong and Zhang Wen 

Cai (1996). While studying the effect of drought on the roots of various temperate 

fruit-crops, Trunov (1996) suggested that the varietal differences noticed in 

response to drought was partly owing to the structure of its leaf, which favoured 

economical utilization of moisture. Chowdhaiy et al. (1996) noticed positive 

significant correlation between stomatal density, leaf venation and grain yield of 

wheat lines grown under drought conditions. In drought resistant variety of 

kiwifhiit higher density of stomata was reported by Wang Rencai (1997), whereas 

drought resistant field bean cultivars were characterized by lower frequency and



size of stomata (Grzesiak et al, 1997). In a study on permanent wilting point in 

some coffee selections, Bayan and Bora (1997) noticed significant influence of 

stomatal density on the time taken to reach the permanent wilting point. Better 

stomatal and cuticular control of water loss was noticed in drought resistant 

hybrid poplar clones (Harvey and Driessche, 1997). Thickness of cuticle, ratio of 

palisade to spongy tissue, thickness of mesophyll tissue, extent of palisade cell 

density, diameter of main leaf vein and layers of collenchyma cells each side of 

the main vein were significantly different in the drought resistant varieties of 

Juglans regia and Juglans sigillata (Mei Xiuying et al., 1998). Higher stomatal 

density in the dwarf varieties of coconut is the reason for their drought 

susceptibility according to Juma et al. (1998).

2.3 Genotypic differences in drought tolerance

There are several reports to show the genotypic variation for each of 

the above mentioned drought related characters. The greatest potential in breeding 

and selection for adaptation to drought seems to lie in specific processes 

controlled by one or a few genes, such as waxy layer on leaves or osmo­

regulation, rather than integrated traits controlled by many genes (Morgen, 1988). 

Hence, selection at genotypic level offers possibility to evolve suitable drought 

tolerant varieties. Rao et al. (1988) observed highly significant clonal variations 

in the levels of ECW in the young rubber plants studied. Clonal variations in 

response to drought in terms of yield and associated physiological parameters in 

Hevea clones were reported by Vijayakumar et al. (1988).

Genotypic differences for chlorophyll content, stomatal resistance and 

individual leaf area were reported in Brassica by Hobbs (1988). Devakumar et al. 

(1988) suggested that maintenance of higher stomatal resistance inspite of better 

water status in Hevea clone RRII 105 might be an indication of genetic variation 

of this clone in stomatal response to leaf water potential. Significant genotypic



differences for ECW content are reported in cocoa by Balasimha et al. (1988) and 

in coconut accessions by Rajagopal et al. (1990). Significant genotypic 

differences for various drought related characters were noticed in several crops 

like Hevea (Nazeer et a l, 1992), tea (Satyanarayana and Spurgeon Cox, 1994), 

wheat (Kumar et al., 1995), sunflower (Reddy et al., 1995), onion (Pathak et al., 

1996), pine seedlings (Tognctti et al., 1997) and in tomato (Rahman et al., 1998).



Materials and Methods



M A T E R I A L S  A N D  M E T H O D S

Wild germplasm conserved in the source bush nursery of Central 

Experimental Station (CES) of Rubber Research Institute of India (RRH) 

constituted the base material for the study. Based on a preliminary observation on 

growth parameters, 450 accessions v^ere selected and planted in the field of CES 

during 1990 for detailed studies. Out of these 450 accessions 250 were selected 

based on juvenile growth and vigour and observations were taken for various 

characters. On the basis of this study and with special reference to stem girth 

increment during the summer period, these 250 accessions were classified using 

growth index data. Out of these 250 accessions, 99 accessions belonging to Acre 

and Mato Grosso states of Brazil were selected. The selection was in such a way 

as to include the maximum variability among genotypes for summer girth. The 99 

accessions selected (Table 1), constitute the materials for the present 

investigation.

The entire study was conducted in three experimental stages at RRII. 

The results obtained in the first experimental stage were utilised for the ensuing 

experiment in the second stage. The methodology followed in each experiment is 

presented below.

3.1 Experiment I - Preliminary screening of wild Hevea germplasm for
drought resistance based on cell membrane stability

Ninety nine genotypes of the Brazilian germplasm planted during 1990 

at the Central Experimental Station of the Rubber Research Institute of India, 

Kottayam were selected for the study during 1998, along with the standard clone 

RRII 105. These genotypes were representative of Acre and Mato Grosso states of 

Brazil. The plants were planted in 2 m spacing and three trees per genotype were 

selected.
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The method used for measuring cell membrane stability of leaves of 

Hevea brasiliensis was that of Sullivan (1972). Fully expanded leaves of 

physiologically similar stage of maturity were collected and washed in deionised 

water before punching the middle leaflets. Each sample for assay consisted of a 

paired set, control (C) and treatment (T) of 20 leaf disc samples cut from a group 

of 2 0  leaflets with a 1 cm diameter specially constructed leaf disc punch.

Prior to assay, the paired set of leaf discs was placed in two separate 

test tubes and washed thoroughly in distilled water, with at least four changes of 

water to remove exogenous electrolytes adhering to tissue surfaces and 

endogenous electrolytes released from cut cells at the periphery of the discs. The 

sample without any treatment served as control. The following procedure was 

carried out.

The “treatment tubes” were first incubated in 20 ml polyethylene glycol 

(PEG 6000) solution (60%) for 24 hrs at 10°C, washed repeatedly with distilled 

water and kept in a controlled water bath at 45°C for one hour. The volume was 

made upto 30 ml and the solution was incubated at 10°C for 18 hours for the 

diffusion of electrolytes. The sample tubes were brought to room temperature and 

the initial conductance was read using a “Systronics 305” conductivity bridge. On 

completion of the initial reading, the control and treatment tubes were autoclaved 

at 1.4 kg/cm^ for 15 minutes to kill the leaf tissue completely. The tubes were 

then brought to room temperature, the contents mixed thoroughly and the final 

conductance was read. The degree of injury to the cell membrane was calculated 

as follows.

(l-T./Tz)
-------------

(l-C ./Q)



where, Tj and T2 are the initial and final conductance of treatments, and Cj and 

C2 are the initial and final conductance of controls respectively. T1/T2, the ratio of 

initial conductance to final conductance is a relative measure of the amount of 

electrolyte leakage induced by the treatments and is assumed to be proportional to 

the amount of injury induced in cell membranes.

Based on this study, these 99 genotypes were classified into five 

groups and 10 genotypes, two from each group were selected for the detailed 

study in the second experiment. The wild genotypes selected were AC 1044, 

MT 55, AC 446, MT 41, MT 76, MT 6 6 , MT 938, AC 650, AC 652 and AC 728.

3.2 Experiment II - Extent of genetic variability among the selected 
genotypes for drought tolerance using various indices (Field 
experiment)

The 10 genotypes selected from Experiment I were multiplied at RRII 

along with the control clones RRII 105 (popular high yielding clone), RRIM 600 

(drought tolerant clone) and Tjirl (drought susceptible clone) as budded stumps 

during 1999. They were grown in polythene bags of lay flat dimension 55 cm x

25 cm and 400 gauge thickness. The budded stumps planted in the polythene bags 

were irrigated well till they were established. During the month of March, 2000 

when the polybag plants were 1 0  months old, the entire polybag plants were 

divided into two sets - one control set where the irrigation was continued on 

alternate days and the other treatment set where the irrigation was stopped.

3.2.1 ' Physiological parameters recorded

Certain drought related physiological parameters were recorded from 

the stressed plants during the following levels of water stress

1. Control (NS)

2. Water stress for 15 days (S-l)



3. Water stress for 30 days (S-2)

4. Water stress for 45 days (S-3)

Corresponding observations from the control set plants were also 

recorded. After withholding irrigation for 45 days, the plants in the treatment set 

were given two days irrigation and the observations were recorded after a week to 

know the post stress (PS) effect.

Several physiological parameters were measured from the middle 

leaflet of the middle leaves of the youngest fully mature flush in each plant. The 

parameters recorded were transpiration (E), stomatal resistance (r )̂, leaf 

temperature (°C), chlorophyll fluorescence and afternoon leaf water potential 

( l̂eaf). Stomatal conductance (gs) was worked out using stomatal resistance 

recordings. Afternoon soil water potential (4̂ soii) was also recorded corresponding 

to the water stress levels. Stomatal resistance, transpiration rate and leaf 

temperature were measured during 08.30 -  10.30 h using LI -  1600 Steady State 

Porometer (Licor Instruments, USA). Chlorophyll fluorescence was recorded 

during 11.30 -  12.30 h using Plant Efficiency Analyzer (Hansatech Instruments 

Limited, England). Leaf water potential and soil water potential were recorded 

during 14.00 -  15.00 h using C -  52 sample chamber psychrometer (Wescor Inc., 

Logan, USA) connected to HR 33T Dew Point Microvoltmeter.

3.2.2 Morphological parameters recorded

To know the genotypic differences among the 10 selected genotypes for 

growth and vigour, the following morphological observations were recorded from 

the plants under irrigation at the age of 1 0  months.

1. Scion height (cm)

2. Scion basal diameter at 20 cm from bud union (mm)

3. Number of leaves



4. Number of leaf flushes

5. Interflush distance (cm)

6 . Single leaflet area (cm^)

7. Specific leaf weight (SLW) (g.cm'^)

Leaflet area was recorded using LI-3100 area meter (Licor 

Instruments, USA).

For recording SLW area of middle leaflets was recorded and they were 

oven dried at 80°C for two days. The following formula is applied.

Leaf dry weight
SLW (g.cm'^) = ----------------------

Leaf area

3.2.3 Biochemical parameters recorded

The following biochemical parameters were recorded from the plants 

under irrigation.

1. Total chlorophyll content (mg cm'^)

2. Chlorophyll reduction percentage

3. Epicuticular wax content (jig cm'^)

3.2.3.1 Total chlorophyll content

Total chlorophyll was estimated by the method of Ozerol and Titus

(1965).

Fresh leaves at physiologically similar stage of development were 

collected for the estimation of total chlorophyll. Twenty discs were punched from 

leaves of each plant and their total area was recorded. The discs were soaked in

10 ml of methanol in small vials and were kept in dark for 24 hrs. Optical density



of the methanol extract was measured at 651 and 664 nm in a UV 

Spectrophotometer. Pure methanol was taken as blank. The total chlorophyll was 

calculated from the following equation.

C (mg cm'^) = 25.5 D 651 + 4.0 D 664 mg r '  of chlorophyll in methanol 

where

C = Total chlorophyll (mg cm'^)

D 651 = Optical density of the extract at 651 nm 

D 654 = Optical density of the extract at 664 nm

3.2.3.2 Chlorophyll reduction percentage

This method suggested by Dhopte and Livera (1989) is based on 

pigment changes induced by heating. The chlorophyll destruction commences 

rapidly at critical temperature of 55-56°C. Thus, chlorophyll stability is a function 

of temperature.

The leaf samples were collected in two sets. One set was placed in test 

tubes containing 50 ml of distilled water and these tubes were kept in a hot water 

bath maintained at 56 ±1°C for exactly 30 minutes. Another set was kept at room 

temperature to serve as control. The total chlorophyll content was estimated from 

both the sets separately using the method of Ozerol and Titus (1965).

From this chlorophyll reduction (%) was worked out as follows:

TotaJ chlorophyll ^otal chlorophyll
, , .  ;  , — content aftercontent m control , ^heatmg at 56°C

Chlorophyll reduction (%) = ------------------------------------------------------ x 100
Total chlorophyll content in control



The wax content was determined by the spectrophotometric method of 

Ebercon et al. (1977). This method is based on the colour change produced by 

the reaction of wax with acidic potassium dichromate (K2Cr2 0 7 ).

Ten leaf discs of 1 cm  ̂area from physiologically mature leaves of the 

top flush were immersed in 15 ml of chloroform for 15 seconds. The extract was 

filtered and evaporated to dryness on boiling water bath, until the smell of 

chloroform was fully vanished. Five ml of acidic K2Cr2 0 7  were added to the 

samples placed in boiling water bath for 30 minutes. After cooling, 12 ml of 

deionised water was added. Fifteen minutes were allowed for the colour 

development and cooling after which the optical density of the samples was read 

at 590 nm in a UV spectrophotometer and expressed in jag. cm'  ̂using a standard 

curve.

3.2.4 Anatomical parameters recorded

3.2.4.1 Leaf anatomical characters

3.2.4.1.1 Observation through leaf cross section

The following measurements were recorded from the cross section of 

the leaf of the non-stressed plants.

1. Thickness of palisade tissue ( îrn)

2. Thickness of mesophyll tissue (^m)

3. Mean number of cells in unit length of palisade layer

4. Leaf thickness (|im)

5. Leaf vein (midrib) diameter (jim)



3.2.4.1.2 Stomatal density

Epidermal peelings were separated by boiling the leaf bits in 60 per 

cent Nitric acid with a pinch of potassium chlorate. The peelings were thoroughly 

cleaned, stained with Safranine and observed under a light microscope. The 

stomatal count of the lower epidermis was expressed as number of stomata per 

square mm.

3.2.4.2 Bark anatomical characters

Bark samples were collected from 16 months old plants at a height of

15 cm from the bud union. Sections were cut using a sledge microtome and the 

following characters were recorded.

1. Total number of latex vessel rows (L V R)

2. Number of L V R in the soft bast

3. Total bark thickness (mm)

4. Thickness of soft bast (mm)

3.3 Experiment HI - Extent of genetic variability among the selected 
genotypes for certain drought related morphological indices (Glass 
house experiment)

In order to avoid the influence of untimely rains, which occurred 

during the recording period a complete set of the selected genotypes were grown 

in polybags inside the glass house. After the establishment of the plants, they 

were divided into two sets. In one set irrigation was given on alternate days, and 

in the second set of plants irrigation was withheld for 60 days. At the end of two 

months stress period the following morphological observations were recorded.

1. Basal diameter of scion (mm) - before and after inducing stress in both
sets

2. Fresh weight of the scion (g) 1 From the stressed and non stressed
3. Dry weight of the scion (g) J  plants after two months period



Dry matter stress tolerance index (DMSI) was worked as follows:

Dry matter of non stressed plants -  Diy matter of stressed plants
DMSI= ------------------------------------------------------------------------------X 100

Dry matter of non stressed plants

3.4 Statistical analysis

Analysis of variance was done as per Completely Randomised Design 

(CRD) and Factorial CRD. Based on the significance of F value, genotypes were 

ranked following Duncan’s multiple range test. Other genetic parameters namely, 

genotypic coefficient of variability (GCV), phenotypic coefficient of variability 

(PCV), broad sense heritability (h^) and genetic advance (GA) were estimated 

using the following formulae. (Allard, I960; Singh and Chowdhary, 1985).

GCV= ------------------- X 100
General mean

where G  ̂ is the genotypic variance

PCV = --------------------  X  100
General mean

where, P‘ is the phenotypic variance

G '
h  ̂ = -------  X 100

p 2

GA = P̂  X  2.06 X  ĥ  

where 2.06 is the selection differential

MSS, - MSSe
G  ̂ = ---------------------



where MSS, is the treatment mean sum of square 

MSSii is the error mean sum of square 

r is the replication

P' = G ' + MSSe

Gcnotypic and phenotypic correlations (Singh and Chowdhary, 1985) 

were worked out to understand the nature and degree of the relationship among 

physiological, morphological, biochemical and anatomical parameters studied. 

Cluster analysis (D^) (Singh and Chowdhary, 1985) was done to assess the 

genetic divergence among the 1 0  selected genotypes and group them into 

different clusters based on the genetic distance. Individual performance of the 

genotypes was assessed by summing up of the rank values obtained for each 

character under selection, based on the parametric relationship of these characters 

to drought tolerance.



Results



R E S U L T S

The results are furnished below under the following heads :

1. Genetic variability for cell membrane stability among wild Hevea germplasm

2. Genetic variability for drought related physiological parameters

3. Genetic variability for drought related morphological parameters

4. Genetic variability for drought related biochemical parameters

5. Genetic variability for drought related anatomical parameters

6. Genetic parameters for selected characters

7. Character association among selected characters

8. Genetic divergence among the selected genotypes for the characters studied

9. Identification of superior genotypes based on rank sum obtained for 

characters under selection

4.1 Genetic variability for cell membrane stability among wild Hevea 
germplasm

The extent of variability among the wild Hevea germplasm for cell 

membrane stability as indicated by relative injury to cell membrane is given in 

Table 2. The range_varied from 30 -  80 per cent among the accessions with a 

mean of 53 per cent. The genotypes AC 446, AC 652, MT 80 and AC 643 showed 

the highest tolerance to watdr and temperature stresses as indicated by relative 

injuiy. The reference clone RRIl 105 showed 53.94 per cent relative injury 

indicating moderate tolerance towards water and heat stresses. The relative injury 

to cell membrane was highest for the genotypes AC 728, MT 58, MT 927 and 

AC 650.

The genotypes were classified by ranking them using general mean and 

SD values (Fig.l). Genotypes with values above mean +SD (>65.23) could be

considered to be very susceptible to drought and were ranked as very low
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Fig. 1. Variability in membrane thermostability of leaf 
tissues among wild Hevea germplasm collection

i '

VL L M H 

Classes of membrane thermostability

B<m+SD 

0mto(m+SD) 

0(m-SD)tom  

Q >m-SD

m = Mean
SD = Standard deviation

VL = Very low 
L = Low

M = Medium 
H = High

Table 3. Phenotypic and genotypic coefficients of variation (PCV, GCV), 
Heritability (t f)  and genetic advance (GA) for cell membrane 
thermostability

GCV PCV GA

21.54 23.09 87 22.2



performers (VL), with respect to this character. Those with values between mean 

and mean + SD (53.39 -  65.23) could be considered to be susceptible to drought 

and were ranked as low performers (L). Genotypes with values between mean -  

SD and mean (41.55 -  53.39) could be considered to be moderately susceptible to 

drought and were ranked as medium performers (M) whereas genotypes with 

values less than mean -  SD (41.55) could be considered to be resistant to drought 

and were ranked as high performers (H). Based on the above classification, 16 

genotypes are ranked as very low performers, 33 each as low and medium 

performers and 17 genotypes as high performers. This method of classification 

makes the selection procedure more easy while going for further crop 

improvement programme.

Analysis of data indicated significant genotypic difference for this 

character among the wild Hevea germplasm. Table 3 gives the split up of the total 

variance into heritable and non-heritable components and also the heritability 

estimates in the broad sense and genetic advance as percentage of mean. Cell 

membrane stability indicated a moderate genotypic coefficient of variability 

(GCV) of 21.54 per cent with a high heritability (87%) and a moderate genetic 

advance of 2 2 .2  per cent.

On the basis of this study, the genotypes AC 652, AC 446 (H), MT 55, 

MT 6 6 , MT 41(M), MT 76, MT 938, AC 1044 (L), AC 650 and AC 728 (VL) 

representative of all range of classification were selected for the second 

experiment in order to include maximum genetic variability among the selected 

genotypes.

4.2 Genetic variability for drought related physiological parameters
among the selected genotypes.

For comparing the performance of selected genotypes under various 

water stress levels, the induced water stress levels are hereafler referred to as non­



stress (NS), mild stress (S-I), medium stress (S-2), severe stress (S-3) which were 

recorded at 15 days interval and the performance at post stress level is designated 

as (PS). The corresponding periods in the control are designated as (NS), (NS-1), 

(NS-2), (NS-3) and (NS-4).

4.2.1 Leaf temperature

The mean leaf temperature of Hevea genotypes under various levels of 

induced water stress is shown in Table 4. During the non-stress period the mean 

leaf temperature was 34.53°C, ranging from 33.69°C to 35.61 °C, whereas in 

stress ,(S-2) period, the mean leaf temperature was 33.36°C with a range of 

30.51°C to 34.39°C. When the leaf temperature was recorded at stress (S-3) 

period, the mean leaf temperature was increased to 34.9°C with a range of 

34.43°C to 35.71 °C. During the post stress period the mean leaf temperature was 

reduced to 34.08°C ranging from 33.34®C to 34.7PC.

Data were analysed separately for each water level and no significant 

genotypic difference was noticed for leaf temperature under non-stress and stress 

(S-2) water levels. The clone Tjirl recorded the minimum leaf temperature under 

non-stress condition, whereas MT 55 recorded the maximum. At water stress 

level S-2, the minimum temperature was recorded by AC 728 and the maximum 

by RRII 105. When the leaf temperature was recorded after a period of 45 days of 

water stress (S-3), there was significant genotypic difference. The clone Tjirl 

recorded the minimum leaf temperature and the genotype M'f 76 recorded the 

maximum leaf temperature. After 2 days irrigation, when the leaf temperature was 

recorded at post-stress level, the standard clone RRII 105 recorded the minimum 

temperature and the maximum was recorded by MT 76, but the genotypic 

difference was not significant. The effect of various water stress levels on leaf 

temperature is represented in Fig.2.



Table 4. Leaf temperature (°C) of selected genotypes of Hevea brasiliemis at 
varying levels of water stress

Genotype Non-stress
(NS)

Stress (S-2) Stress (S-3) Post stress 
(PS)

AC 1044 33.89*’ 33.39 34.54 34.69
MT 55 35.61 “ 33.21 34.69 34.09
AC 446 34.71 33.31 35.08 34 14«bc

RRIM 600 34.06 33.50 34.71 33.72
Tjirl 33.69 ^ 33.27 34.43 34.01
MT41 34.48 33.10“'’ 35.56“ 34.37
MT76 34.84 33.06 35.71 “ 34.71
MT 6 6 34.52 33.86“ 34.78 ’’ 34.30

MT 938 34.93 33.72 “ 34.48 34.28

AC 650 33.93 34.06 ” 35.00 34.16“”"

AC 652 34.53 34.34 “ 35.11 33.60

RRII 105 34.72 34.39 “ 35.01 33.34"
AC 728 34.93 30.51 34.61 33.66
Mean 34.53 33.36 34.90 34.08
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Table 5. Result of Factorial CRD for leaf temperature (°C) of Hevea genotypes 
during non stress (NS) and stress (S-3) periods

Genotype Non stress 
(NS)

Stress (S-3) Mean Conclusion

AC 1044

MT55

AC 446

RRIM600

Tjirl

MT41

MT76

M T6 6

MT938
AC 650
AC 652

RRH105
AC 728

Mean

33.89

35.61

34.71 

34.06 

33.69 
34.48 

34.84

34.52

34.93

33.93
34.53

34.72
34.93

34.53

34.54

34.69

35.08

34.71 

34.43 

35.56

35.71 

34.78 

34.48

35.00 

35.11

35.01 
34.61

34.9

34.22

35.15

34.89

34.38

34.06
35.01

35.28

34.65

34.71

34.47
34.82

34.87
34.77

SE plof’ 

Gen. Mean 

CV%

0.094

34.714

1.69

Variance ratio

Genotype 

NSvsS 

G X NS vs S

2.197

7.868**

1.602

CD (P=0.05)

Genotype 

NS vsS 
Interact

0.569

0.223
0.804



Analysis of data was done separately for each level of water stress with 

non-stress, in order to assess genotypic variability, effect of water stress, as well 

as the interaction effect between genotype x non-stress vs stress period (Table 

14). Leaf temperature was found to be significantly more during stress period. 

When S-2 and post-stress periods were considered with non-stress period, 

significant difference was noticed only between non-stress vs stress period and 

not between genotypes or the interaction between genotype x non-stress vs stress 

period. On the other hand when stress (S-3) was considered (Table 5) with non­

stress, there was significant difference in the leaf temperature between the 

genotypes as well as non-stress vs stress period.

Corresponding to stress periods, the non- stress period of plants under 

irrigation was considered in order to nullify the effect of age difference between 

the plants (Table 14). The non-stress (NS-2) was taken against S-2, NS-3 against 

S-3 and NS-4 against post stress. When NS-2 and S-2 were considered as non­

stress and stress periods, there was significant difference in the leaf temperature 

between non-stress vs stress period, but not among genotypes or the interaction 

between genotype x non-stress vs stress period. But the effect was different when 

NS-3 and S-3 were considered as non-stress and stress periods. Here, the 

differences in leaf temperature between the genotypes, non-stress vs stress period 

as well as the interaction between genotypes x non-stress vs stress period were 

significant. The response was different when N S^ was compared with post-stress 

leaf temperature of stressed plants. There was significant genotypic difference as 

well as significant interaction between the genotypes x non-stress vs post stress 

period, but no significant difference between non-stress vs post stress period.

4.2.2 Components of water relation

Stomatal conductance, transpiration rate and leaf water potential are 

considered here.



The stomatal conductance under various water levels is given in Table 6 . 

Under non-stress condition, the mean stomatal conductance was 0.941 moles m' 

ŝ ' with a range of 0.353 -  1.749 moles m'^s '. After a period of one month water 

stress (stress-2 ) when the stomatal conductance was recorded, the mean value was 

1.061 moles m'^s ' with a minimum stomatal conductance of 0.575 and a 

maximum of 1.683 moles m'^s"'. When the water stress intensity was 

further increased (S-3), the mean stomatal conductance was reduced to 0.807 

moles m'^s"' and the minimum conductance was 0.482 with a maximum 

conductance of 1.725 moles m'^s’’. After giving 2 days irrigation when the post 

stress effect was studied, the mean stomatal conductance showed an increase to 

1.998. and the range was 1.486 -2.876 moles m 'V ’.

Analysis of data done separately for each water level, clearly indicated 

significant genotypic differences. Under non-stress condition, the genotype 

AC 652 recorded the lowest stomatal conductance, whereas the highest was in the 

clone Tjirl. When the stress intensity increased, the response of the genotypes 

was different, where the minimum conductance was recorded by the genotype 

AC 1044 and the maximum by MT 6 6 . When the stress intensity was further 

increased, stomatal conductance was reduced to the minimum in the genotype 

MT 41 and MT 938 recorded the maximum. Under post stress condition, the 

minimum stomatal conductance was recorded by MT 6 6  and the clone RRIM 600 

recorded the maximum conductance. The response of each genotype under non­

stress, stress and post stress levels is represented in Fig. 3. The genotypes MT 6 6 , 

MT 938, AC 650 and AC 652 were found to be not responsive to water stress 

levels indicated by the increased rate of stomatal conductance at water stress 

level.



Table 6 . Stomata! conductance (moles m‘̂  s'') of selected genotypes of Hevea 
brasiliemis at varying levels of water stress

Genotype Non stress 
(NS)

Stress (S-2) Stress (S-3) Post stress (PS)

AC 1044 0.648 0.575 0.507 ® 1.608

MT 55 0.618 0.604 0.541 1.580

AC 446 0.809 •= 0.715^" 0.543 1.227
RRIM 600 1.453'’ 1.130*" 0.732 2.876“

Tjirl 1.749“ 1.651 “ 0.809 1.827“^

MT41 0.650 0.617'’ 0.482 ® 2.048 *’̂ ‘=

MT76 1.176 1.079*’" 0.982 “ 2.250 “*’̂

MT 6 6 0.670 1.683 ® 1.091 *’" 1.486

MT 938 0.830 1.267*’ 1.725" 1.932“*'=

AC 650 0.696" 0.949 0.698 2.164“*’'=̂

AC 652 0.353 0.935 0.631 2.845

RRII 105 1.304'’ 0.920 0.499 » 1.588“̂

AC 728 1.272 ’’ 1.673“ 1.248*’ 2.545 “*’“

Mean 0.941 1.061 0.807 1.998



VO
C O

CO

(/)
f f i
2lo
00
o

Q l

n
CO

I
OT
(O
CO

2
55
□
(/>«0)
c
o
z
m

v - w . - - w ; w ; w .  
iiiiiiiiiiiiiiiiiiiiiiii

nnmiiiiim m

. w i v m w M W i ? m w
■ ■ ■ ■ ■ ■ I I

»>>>>>>>>>»'
H l l l l l l

•"■ "■ W b V

■ ■ ■ ■ ■ I I » » » » » » !
I M I I I I I I I I I I

I5E X 300

l U l l l l l l l l l

r M V V v ' a r v ' g v y y ~ t f ‘w-w~H~g~iy w w

r S T i

iiiiiiiiiiiiiiiiiiiiii

i T n r M T n T K - M T T W W - t n r v w v

u:

1

iVm-mVm-mVm"mVm-mVm~m-m

I I II IIIIIIIIMIIIIIIIIIIIIIIIIII

iiiiiiiiiiiiiiiiiiiiiiiiiii

■ 111II ill fiiimIIILllillllllll
■mmtnnrifMiVVVl
1
■ ■ ■ ■ ■ 1hmmyiimmm
iw m

o
CO

lO
oi

o
CNi

in

\

•%)

O  lO  o
T-: d  d

<0
to
3:

% w
Q. 0)

f. ^ Si. «G) (]>
T3 *3 
0) (0

if? « J O )  o

0) CL(/)
vt—
o

T3C(0

%

T «
S.

E
20 <i>
E ^ S  w
o> c

1 =CO ^

o ^
•O -52 
= 52
8  I

(0 2  
E -Q
5
CO
CO
d)
E

(, S  ^.LU S 0|OUl) 80UB ]0n p U 00 |B}BLUOJSt c



Table 7. Result of Factorial CRD for stomatal conductance (moles of
Hevea genotypes during non stress (NS) and stress (S-3) periods

Genotype Non stress 
(NS)

Stress (S-3) Mean Conclusion

AC 1044

MT55

AC 446

RRIM600

Tjirl

MT41
MT76

M T 6 6

MT938

AC 650

AC 652
RRH105

AC 728

Mean

0.648

0.618

0.809

1.453

1.749

0.650
1.176

0.670

0.830

0.696

0.353
1.304

1.272

0.941

0.507

0.541

0.543

0.732

0.809

0.482
0.982

1.091

1.725
0.698

0.631

0.499
1.248

0.807

0.578

0.580

0.676

1.093

1.279

0.566
1.079

0.880

1.278

0.697

0.492
0.902

1.260

SE plof‘ 0.023

Gen. Mean 0.874

CV% 16.11

Variance ratio

Genotype 

NS vsS 
G X NS vs S

26.56

17.63’*
19.17**

CD (P=0.05)

Genotype 
NS vsS 

Interact

0.136
0.053

0.193



To know the effect of each level of water stress on the genotypes, 

analysis of data was done separately by taking non-stress level with each of the 

stress levels and with the post stress level (Table 14). When non-stress with S-2 

stress level and post-stress were considered separately, genotypic difference, 

difference between non-stress and stress and the interaction effect between 

genotype x non-stress vs stress were all significant. Similar was the result when 

non-stress period was considered against S-3 stress level (Table 7).

The various stress levels of plants under water stress were analysed 

statistically with the corresponding non-stress periods of plants under irrigation 

(Table 14). When S-2 was compared with NS-2, there was significant genotypic 

difference as well as significant interaction effect between genotype x NS vs S, 

but the difference between NS vs S was not significant. Under increased stress 

intensity (NS-3 vs S-3) the difference was significant for all the conditions. The 

genotype, the stress levels (non-stress and stress) and the interaction between 

genotype and stress levels differed significantly. When NS-4 was compared with 

post stress period, genotypic difference and interaction effect were significant.

42.2.2 Transpiration rate (inside the chamber)

Transpiration rate of selected genotypes at varying levels of water 

stress is shown in Table 8 . Under non-stress condition, the mean transpiration rate 

recorded was 20.55 îg cm'^s'^ with a range of 8.62 - 35.47 |ig cm'^ s '. When the 

water stress intensity mcreased to S-2 level, the mean transpiration rate was 

reduced to 18.35 |ig cm'^ s‘‘ with a minimum transpiration of 10.0 ng cm'^ s*’ and 

a maximum of 26.19 ^g cm‘̂  s '\  When the stress intensity was increased fiirther 

(at S-3) the genotypic response to water stress was different. At this level, the 

minimum transpiration rate recorded was 10.87 ^g cm'^ s'* whereas the maximum 

was 40.49 cm'^ s'̂  and the mean value recorded was 18.34 |xg cm'^ s '\  At



Table 8 . Transpiration rate (|ig cm'^s'*) of selected genotypes of Hevea 
brasiliensis at varying levels of water stress

Genotype Non stress 
(NS)

Stress (S-2) Stress (S-3) Post stress (PS)

AC 1044 13.85 12.38 10.87'’ 28.41
MT55 15.56“" 14.94*=̂ 12 9 2 d e f 34.87

AC 446 20.29 *= 16.49 ^ 3  7 5  def 27.16'"

RRIM600 25.17’’ 19.87 16.87“"''' 40.45

Tjirl 35.47 “ 2 1  3 9  be 18.23“" 29.19“"

MT41 15.03 1 0 . 0 0  8 15.45“""̂ 38.39

MT76 26.97 19.91 19.50“ 34.01

MT 6 6 15.23 24.14®'’ 20.69 “ 30.90 ^

MT938 18.12'=^ 20.64'’̂ 30.50^ 3 6 ^ 4  abed

AC 650 16.56“* 20.99 1 3  7 0 d e f 32.19"’“"

AC 652 8.62'^ 14.72 '=‘' 12.77 '='■ 45.45

RRII 105 28.83 16.90“^ 1 2 .6 6 27.42

AC 728 27.41 ” 26.19“ 40.49" 39.74

Mean 20.55 18.35 18.34 34.18
Any two means having a common letter are not significantiy different
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Table9. Result of Factorial CRD for transpiration rate (|ig cm^ s ') of Hevea 
genotypes during non stress (NS) and stress (S-3) periods

Genotype Non stress 
(NS)

Stress (S-3) Mean Conclusion

AC1044

MT55

AC 446

RRIM600

Tjirl
MT41

MT76

M T 6 6

MT938

AC 650
AC 652

RRHIOS

AC 728

Mean

13.85
15.56 

20.29 

25.17 

35.47 

15.03 

26.97 

15.23 

18.12

16.56 
8.62

28.83

27.41

20.55

10.87 

12.92 

13.75

16.87 

18.23 
15.45

19.50

20.69

30.50

13.70 
12.77 

12.66 
40.49 

18.34

2.36

14.24

17.02

21.02 

26.85
15.24

23.24

17.96 

24.31 

15.13 
10.69 
20.75

33.96

SE plot*' 

Gen. Mean 

CV%

0.441
19.44

14.16

Variance ratio

Genotype 

NS vsS 

G X NS vs S

33.38
12.54*

17.46*

CD (P=0.05)

Genotype

NSvsS
Interact

2.667

1.044
3.77



post stress level, the response of genotypes was again different. Here, the 

minimum recorded was 27.16 ^g cm’̂  s‘‘ with a maximum transpiration rate of 

45.45 ng cm'^ s"' and a mean value of 34.18 [ig cm‘̂  s"'.

Genotypic performance under each water level was statistically 

analysed, and the result indicated significant genotypic difference under each 

level. Under non-stress condition, the lowest transpiration rate was recorded by 

the wild genotyp)e AC 652, which was lower than that of all the standard clones 

considered for the study. However, the highest rate of transpiration was occurred 

in the drought susceptible clone Tjirl, which further confirms its drought 

susceptibility. When stress level was increased to S-2 after a period of one month 

water stress, the genotypic response was different as in the case of stomatal 

conductance. At this level, the minimum transpiration rate was recorded in the 

wild genotype MT 41 (15.03 jAg cm'^ s'‘), which was significantly lower than that 

of the drought tolerant clone RRIM 600 and that of standard clone RRII 105,
. I

where the rate of transpiration was 19.87 and 16.9 |ng cm'^ s ' respectively. But 

when the stress intensity was increased further, the genotypic response again 

changed. At this level (S-3) the maximum control on transpirational loss of water 

was expressed by the wild genotype AC 1044 with a minimum transpiration rate 

of 10.87 ng cm'  ̂s’' whereas the water control was minimum in the wild genotype 

AC 728, which was having a maximum transpiration rate o f40.49 jig cm'^ s ‘. But 

the standard clones reacted differently, where the transpiration rate of RRII 105 

was significantly lesser than the drought tolerant clone RRIM 600 and the drought 

susceptible clone Tjirl. Under post stress level, all the genotypes exhibited a 

higher rate of transpiration. However, the maximum was recorded by the wild 

genotype AC 652, followed by the clone RRIM 600 and the minimum 

transpiration rate was observed in the wild genotype AC446 followed by the clone 

RRII 105.



Figure 4 gives a clear picture of genotypic response for rate of 

transpiration under non-stress, stress and post stress levels. Except for genotypes 

MT 41, MT6 6 , MT 938, AC 652 and AC 728 all other genotypes exhibited a 

drastic reduction of transpiration rate under severe water stress condition. This 

indicates their capability of keeping a well controlled water balance system, by an 

efficient stomatal closure mechanism.

As in the previous cases, here also genotypic performance was 

statistically analysed by considering the non-stress level with each water stress 

level of the stressed plants (Table 14). When non-stress and S-2 stress level of 

stressed plants were considered, the genotypic difference, NS vs S and genotype x 

NS vs S were all significantly different. Similar was the result when the water 

levels NS and post stress were considered. The genotypic response and the effect 

of NS vs S-3 stress levels are given in Table 9.

Followed by this, the response between stressed plants and irrigated 

plants were analysed by considering the various stress levels and corresponding 

non-stress levels, i.e., NS-2 vs S-2, NS-3 vs S-3, and NS-4 vs PS (Table 14). Here, 

under all levels between non-stress and stress/post stress condition, the genotypic 

difference, non-stress vs stress/post stress and the interaction of genotype x NS vs 

S were significantly different.

4.2.2.3 Leaf water potential

The mean leaf water potential ('P leaf) of selected genotypes under 

various water levels are shown in Table 9. Under non-stress condition the mean 'F 

leaf recorded was -2.92 MPa with a range of -3.15 to -2.74 MPa. After 15 days of 

stress period, the ^  leaf was slightly affected with a mean value of -2.92 MPa, 

but the range varied from -3.23 to -2.7 Mpa. At S-2 level also there was 

much difference in the mean 4̂  leaf recorded. The 'P leaf varied from -3.44 to



Table 10. After noon leaf water potential (-MPa) of selected genotypes of Hevea 
brasiliensis at varying levels of water stress

Genotype Non stress 
(NS)

Stress
(S-1)

Stress
(S-2)

Stress
(S-3)

Post stress 
(PS)

AC 1044 -3.000" -3.076 -3.228 -3.504 “ -2.986

M T55 -2.891 “ -2.781 -2.815*^ -2.951 “ -2.970 *’

AC 446 -2.776" -2.800 -2.908 -3.132“ -2.919'’

RRIM 600 -2.801 ^ -2.841 -3.199 -3.464 “ -3.071

Tjirl -2.777 “ -2 .702" -2.603 -3.076" 2 711 ab

MT41 -2.759 “ -2.869 -2.426 “ -2.527 “ -2 .197“

M T76 -3.220 -3.238 -3.443" -2.808 “ -3.141 "

MT 66 -3.349 ® -3.199*^ -3.169“̂ -3.428 “ -3.179*’

M T938 -2.920 “ -2.847 -2.659 -2.678 “ -2.187“

AC 650 -2.769 “ -3.200 -3.257 . -3.533 “ -3.169

AC 652 -2.792" -2.864“** -2.313“ -2.699" -2.152“

RRH 105 -2.737 “ -2.785 -3 107 ode -3.337 “ -2.898

AC 728 -3.154“ -2.781 -2.625 -3.015“ -2.503

Mean -2.919 -2.922 -2.904 -3.089 -2.776
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O  L f)

d  d
lO

1“
o
CN

-r
lO
c\i

o
C O

(BdW-) lEjiueiod J9)BM ieai

COQ̂
(O
(A
0

O
o .

□

CO
0 )
O )

£

(O
O )

Ieo
Co

—1— 
in
CO

o
t

nj0):::kQ)
a:v»— i
o 1
(0(1)
a

«
d>

3?o
>

c (/) I0) (/) !O) 0) !
T3 -0) 0) \-*->o®

-t-> 1 U)o0) a.«>*-o
■acca

lo to
Q. tf)
J d)i~

(0
w <0'•S (0c 0>
so to
a ck. o
B c
(0♦;(0
•*>,<0
?Q» 3)

c
C ,0)
oo 52c Sk. •QQ)
«
<
ui
at
il



Table 11. Result of Factorial CRD for after noon leaf water potential (-MPa) of 
Hevea genotypes during non stress (NS) and stress (S-3) periods

Genotype Non stress 
(NS)

Stress (S-3) Mean Conclusion

AC 1044 

MT55 

AC 446 

RRIM 600 

Tjirl 
MT41 
MT 76

MT 6 6  

MT938 
AC 650 

AC 652 

RRII 105 

AC 728 

Mean

-3.000

-2.891

-2.776

-2.801

-2.777
-2.759
-3.220

-3.349

-2.920
-2.769

-2.792

-2.737

-3.154

-2.919

-3.504

-2.951

-3.132

-3.464

-3.076
-2.527
-2.808

-3.428

-2.678
-3.533

-2.699

-3.337

-3.015

-3.089

-3.252

-2.921
-2.954

-3.133

-2.926
-2.643
-3.014

-3.389

-2.799
-3.151
-2.746

-3.037

-3.085

SE plof‘ 0.0692

Gen. Mean -3.004

CV% -14.390

Variance ratio

Genotype
NS vsS
G X  NS vs 

S

1.3634
3.0081
1.2035

CD (P=0.05)

Genotype 
NS vsS 
Interact

0.4188
0.1642
0.5923



-2.31 MPa with the mean value of -2.9 MPa. When the stress intensity was 

increased to S-3 level, the mean T  leaf was reduced to -3.09 MPa with a range of 

-3.53 to -2.53 MPa. When irrigation was given after a stress period of 45 days, the 

genotypes responded well, where the mean T  leaf was increased to -2.78 MPa 

with a minimum of -3.18 MPa and a maximum of -2.15 MPa.

Data were analysed statistically for knowing the 'P leaf at each level. 

There was no significant genotypic difference for T  leaf under non-stress 

condition. However, the clone RRII 105 showed the highest T  leaf followed by 

the genotype MT 41. The lowest T  leaf was recorded in the genotype MT 6 6 , 

followed by MT 76. But under S-1 period, the difference among the genotypes 

was significant with the highest leaf shown by the clone Tjirl and the lowest by 

MT 76. The 4̂  leaf of the clones RRIM 600 and RRII 105 was on par with each 

other and the genotype AC 652 was having more T  leaf than this two clones. 

Under S-2 level also, the genotypic difference for leaf was significant, where 

the genotype AC 652 recorded the highest T  leaf followed by MT 41 and 

the lowest by the genotype MT 76. At this stress level, the 'P leaf of the clones 

RRIM 600 and RRII 105 was lower than Tjirl. This was repeated under S-3 

period also, but there was no significant genotypic difference. Under this stress 

period, the genotype MT 41 showed highest T  leaf and the lowest was by 

AC 650. Under post-stress level, the difference in 'P leaf among the genotypes 

was significant and tlie genotype AC 652 recorded the highest 'V leaf, whereas the 

lowest was by the genotype MT 6 6 . The clones RRIM 600, Tjirl and RRII 105 

responded similarly. This response of T  leaf under various water levels is clear 

from the Fig. 5.

The effect of each water stress level with the non-stress level was 

analysed separately (Table 14) in order to evaluate the genotypic response, water



level effect as well as the interaction effect. When the 'P leaf at NS was compared 

with S-1 level, only the genotypic difference was significant, whereas NS vs S and 

the interaction effect were not significant. When NS and S-2 levels were 

considered, the genotypic as well as interaction between genotype x NS vs S were 

significant, but NS vs S was not significant. On the other hand when NS and S-3 

levels were considered, there was no significant difference for any of the factor or 

for the interaction and for NS and PS levels the significant difference was only for 

genotypes.

The stress periods were then compared with corresponding non-stress 

periods of irrigated plants (Table 14). There was significant genotypic difference, 

difference between NS vs S and the interaction effect between genotype x NS vs 

S, when NS-1 and S-1 as well as NS-2 and S-2 levels were compared. When NS-3 

and S-3 levels were compared, the effect was significant for NS vs S and for 

interaction, but NS-4 and PS levels exhibited significant difference between 

genotypes, between NS vs S periods and genotype x NS vs S interaction effect.

4.2.2.4. Soil water poteiltial

Soil water potential Q¥ soil) recorded for each genotype under varying 

water levels and the mean T  soil are shown in Table 12. Under non-stress 

condition, the mean soil recorded was -0.802 MPa with a range o f-1 .77 to 

-0.314 MPa. When the water stress increased to S-1 level, the mean 'P soil 

reduced to -1.36 MPa and the range observed was -2.98 to -0.80 MPa and with 

increasing stress intensity (at S-2) the mean soil fiirther reduced to -3.1 MPa 

and the range varied fi'om -5.16 to -1.83 MPa. At water stress S-3, there was a 

further reduction of'P  soil to -4.13 MPa and the minimum soil recorded was 

-6.79 MPa whereas the maximum *P soil was -2.1 MPa. At post stress level there 

was an increase o f'P  soil for all the genotypes, where the mean 'P soil increased 

to -3.08 MPa with a range of -5.12 to -1.14 MPa.



Table 12. After noon soil water potential (-MPa) of selected genotypes of Hevea 
brasiliemis at varying levels of water stress

Genotype Non stress 
(NS)

Stress
(S-1)

Stress
(S-2)

Stress
(S-3)

Post stress 
(PS)

AC 1044 -0.979 '■ -1.172'’ -3.053 -3.760 -2.491

MT55 -0.490 -0.904 “ -2.852 -3.430 -2.98
AC 446 -0.660 -0.908 “ -3.151 -3.653 -2.472
RRIM 600 -0.697 -0.853 “ -1.827“ -2.908" -2.343
Tjirl -0.552 -1.084'’ -3.057 _3 417ab - i . i 4 r
MT41 -1.327® -1.900'* -3.096 -3.753 -2.906

MT76 -0.480 -1.494'= -2.963 -4.704 -3 0i9abc

MT 6 6 -0.469 ^ -1.616'= -2.899 -4.919'* -4.285
MT 938 -0.612'^" -1.545'= -5.161 " -6.786 ■= -5.115“
AC 650 -1.067'' -1.232'’ -3.648 '* .4.145 -2 .8 8 6

AC 652 -1.766'' -2.982 -3.225 -4.285 ■ -3.649

RRU 105 -1.049^ -1.158'’ -2.925 -3.984 ^ -3.399

AC 728 -0.314'' -0.796 “ -2.517’’ -3.936 -3.296

Mean -0.802 -1.357 -3.106 -4.129 -3.076
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Table 13. Result of Factorial CRD for after noon soil water potential (-MPa) of 
Hevea genotypes during non stress (NS) and stress (S-3) periods

Genotype Non stress 
(NS)

Stress (S-3) Mean Conclusion,

AC 1044 

MT55 
AC 446 

RRIM600 

Tjirl 

MT41 

MT76 

MT 6 6  

MT938 
AC 650 

AC 652 

RRII 105 

AC 728 

Mean

-0.979

-0.490
-0.660

-0.697

-0.552

-1.327

-0.448

-0.469

-0.612
-1.067

-1.766

-1.049

-0.314

-0.802

-3.760

-3.430
-3.653

-2.908

-3.417

-3.753

-4.704

-4.919

-6.786
-4.145

-4.285

-3.984

-3.936

■4.129

-2.369

-1.960
-2.157

-1.802

-1.985

-2.539

-2.576

r2.694

-3.699
-2.606

-3.026

-2.517

-2.125

SE plof' 0.598

Gen. Mean -2.466
CV% 15.14

Variance ratio

Genotype 11.02* 

NSvsS 1547.87* 

G x N S v s S  12.56’

CD (P=0.05)

Genotype 

NS vsS 

Interact

3.616
1.419

5.116
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Analysis of data done separately for each water level indicated 

significant genotypic differences for T  soil and at post stress level, the difference 

was insignificant. Under non-stress condition, as well as at S-1 stress level, the 

maximum T  soil was shown by the genotype AC 728, whereas the genotype 

AC 652 showed the minimum T  soil. But at S-2 and S-3 stress levels, clone 

RRIM 600 was having the maximum T  soil and the genotype MT 938 was 

showing the minimum soil. At post stress level the quick response was by the 

clone Tjirl and the genotype MT 938 showed least response to irrigation. Fig. 6  

exhibits the genotypic difference in 'P soil at different water levels.

Significance of genotypic difference, stress effect and the interaction 

effect of genotype x NS vs S were tested statistically for each water level 

separately (Table 14). When NS level was taken v^th S-1 and S-2 levels 

separately, there was significant difference between the genotypes, between NS vs 

S periods and genotype x NS vs S interaction effect. The same was the result 

when NS vs S-3 (Table 13) were considered. When NS level was taken against 

PS level the genotypic difference as well as the interaction effect was significant 

at 5 per cent level whereas the difference between NS vs PS was significant even 

at 1 per cent level.

Followed by this analysis, the effect of water stress was analysed by 

considering the water levels under controlled condition, i.e., NS-1 with S-1, NS-2 

with S-2, NS-3 with S-3 and NS-4 with PS of the stressed plants (Table 14). All 

the stress levels showed significant difference among genotypes, between NS vs 

S, and the interaction effect between genotype x NS vs S when considered with 

corresponding non-stress condition of the irrigated plants. While NS-4 was taken 

against PS level of stressed plants, there was significant difference only for the 

water levels considered and there was no genotypic difference or interaction 

effect.



The various components of chlorophyll fluorescence signals emitted 

(i.e., initial fluorescence (Fq), maximal fluorescence (F„,) and variable 

fluorescence ( F v )  along with ratio F v / F m  and F ^ / F o  of the selected genotype at non­

stress as well as stress conditions are shown in Table 15. The Fq of genotypes 

under non-stress condition ranged from 164.78 -  220.78 with a mean value of 

194.67, whereas at stress condition the Fq increased in all the genotypes and the 

range was between 417.56 -  629.0 with a mean of 556.98. The maximal 

fluorescence (F,n) under non-stress condition was in the range of 623.45 -  820.11 

and the mean F„, was 719.43. At stress level this F^ was reduced to 357.11 and 
ranged from 235.0 -  500.89. The variable fluorescence (Fv) under non-stress 

condition ranged from 438.56 -  628.67 and the mean Fy recorded was 524.84. As 

in the case of Fm, Fv also reduced to 162.44 under stress condition and the value 

ranged from 70,22 -  288.22. The Fv/Fn, ratio under non-stress condition was 0.728 

and ranged from 0.693 -  0.769 whereas at stress level the mean ratio was reduced 

to 0.438 and the range was 0.299 -  0.575. Similarly the ratio Fn,/Fo under non­

stress level was higher than that under stress condition. The mean F„,/Fo at non­

stress level was 3.717 and the range was 3.258 - 4.328, whereas under stress 

condition, the F„/Fo dropped to 0.653 and the range occurred was between 
0.405 -  0.942.

The data were analysed statistically and for all the components of 

fluorescence there was significant genotypic difference both under stress and non­

stress levels and this was true for the ratios Fv/Fm and Fm/Fo. The drastic increase 

of Fo under stress level is clearly illustrated in Fig. 7. Figs. 8  to 11 represent the 

drastic reduction noticed in the genotypes for F„, Fv, Fv/F„, and Fn/Fo respectively.

The data were statistically analysed for non-stress and stress levels as 

well as for the interaction between genotype and NS vs S levels. Table 16 gives 

the result of the above analysis for Fq where there was significant difference



Table 15. Fluorescence parameters recorded in the selected genotypes of Hevea 
brasiliensis under non stress (NS) and stress (S) condition

Genotype Fv/F„ Fm/Fo
AC 1044

MT 55

AC 446

RRIM600

Tjirl

MT41

MT 76

M T 6 6

MT938

AC 650

AC 652

RRIl 105

AC 728

NS

S

NS

S
NS

S

NS

S

NS
S

NS

S

NS

S

NS
S

NS

S

NS

S
NS

S
NS

S

NS
S

212.67
531.78

189.33

583.78
220.78

526.89

170.56

468.00 

195.22
561.33
214.44

619.11

170.11

629.00

164.78
560.67

201.56

558.78

190.33

573.89
202.44
616.33
184.89

417.56

213.56
593.67

820.00

500.89 

818.00

423.55
736.56

430.45

638.89

341.45

653.11
287.00
781.11
376.44

713.33

254.44

630.89
235.00

677.33

320.11

744.56

361.00

820.11

406.22
623.45 

390.78

695.22 
315.11

607.33 
288.22

628.67

234.22
515.78

209.67

468.33

170.89

457.89 
91.78

566.67 

162.00

543.22 

84.33
467.11

70.22

475.78

118.55

554.22

170.67
617.67

203.78
438.56

205.89

481.67 
101.55

0.741
0.575

0.769

0.553
0.700
0.487

0'.733

0.500

0.701
0.320
0.725

0.430

0.761

0.331

0.739
0.299

0.709

0.370

0.744

0.473
0.753
0.502
0.702

0.527

0.693
0.322

3.857
0.942

4.328

0.726
3.337
0.817

3.751

0.730

3.353
0.511
3.669

0.608

4.196

0.405

3.836
0.419

3.372

0.573

3.91

0.629
4.067

0.659
3.385

0.936

3.258
0.531

NS

S

719.43
357.11

524.84

162.44

0.728
0.438

3.717
0.653
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Table 16. Result of Factorial CRD for initial fluorescence (Fo) of Hevea genotypes 
during non stress (NS) and stress (S) periods

Genotype Non stress 
(NS)

Stress (S) Mean Conclusion

AC 1044 

MT 55 

AC 446 

RRIM600 

Tjirl 
MT41 

MT 76 

M T 6 6  

MT 938 

AC 650 

AC 652 
RRII 105 

AC 728 

Mean

212.67

189.33

220.78

170.56 

195.22
214.44 

170.11

164.78

201.56

190.33

202.44 

184.89
213.56

194.67

531.78

583.78

526.89

468.00

561.33 

619.11
709.00

704.67

705.78

573.89

616.33 

717.56
763.67

621.68

372.22

386.56 

373.83

319.28

378.28 
416.78

439.56 

434.72 

453.67 

382.11 

409.39

451.22 
488.61

SE plot' 

Gen. Mean 

CV%

1.914

408.17

2.93

Variance ratio

Genotype 85.96

NSvsS 24875.18* 

G x N S v s S  94.37*

CD (P=0.05)

Genotype 

NS vsS 

Interact

11.58

4.542

16.38
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between the genotypes, between NS vs S periods and genotype x NS vs S 

interaction effect.

4.3 Genetic variability for drought related morphological parameters

4.3.1 Field experiment
4.3.1.1 External appearance

The genotypic performance for various morphological parameters 

recorded are presented in Table 17. Plant height varied from 99.22 - 147.06 cm 

with a mean height of 118.31 cm. The genotypic difference was significant at 5 

per cent level. The tallest genotype was MT 55, whereas the shortest was AC 

652. The clones RRIM 600 and Tjirl had similar heights, whereas clone RRII 

105 was taller than these two clones.

Basal diameter was the highest in AC 650 (15.79 mm) followed by 

MT 6 6  and lowest in AC 652 (10.14 mm) with a mean of 12.47 mm. Though 

there was numerical difference in basal diameter between accessions the 

difference was not significant.

Number of flushes observed among the wild genotypes exhibited 

significant genotypic difference at 5 per cent level of significance. The mean 

number of flushes was 2.64 with a range of 1.78 - 3.81. The minimum number of 

flushes was seen in the genotype AC 652, whereas the genotype MT 41 possessed 

the maximum number of flushes, followed by the genotype MT 55. The number 

of flushes in the clones RRIM 600, Tjirl and RRII 105 were comparable.

Total number of leaves present among the genotypes studied varied 

from 33.45 to 99.72 and the mean number of leaves computed was 63.88. The 

highest number of leaves was possessed by the genotype MT 41 followed by 

AC 650, whereas the lowest number of leaves was present in the genotype 

AC 652 followed by MT 6 6 . Analysis of data indicated significant genotypic
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difference for the total number of leaves present in these genotypes. Clones 

RRIM 600 and RRII 105 were having similar leaf number, whereas the total leaf 

number of Tjirl was more than these two clones.

When the interflush distance was studied, there was no significant 

genotypic difference but the character varied in each genotype. The mean 

interflush distance recorded was 27.07 cm and the range was 19.57 - 43.92 cm. 

The lowest interflush distance was observed in the wild genotype MT 6 6  and the 

highest was in MT 938. The clones RRIM 600, Tjirl and RRII 105 were on par.

Single leaflet area exhibited significant genotypic difference. Wild 

genotypes in general recorded higher leaf area than the cultivated clones. The 

highest leaflet area recorded was 90.78 cm  ̂ in the genotype AC 728 and the 

lowest was 59.3 cm  ̂ in the clone Tjirl. The clones RRIM 600 and RRH 105 were 

also on par with Tjirl. The mean leaflet area recorded was 76.78 cm .̂

Specific leaf weight did not show any significant difference among the 

genotypes. However, the genotypes expressed slight variation among each other, 

where the range was 0.005 - 0.007 g cm'^ with a mean of 0.006 g cm'^. SLW of 

Tjirl and RRII 105 was 0.007 g cm'^ whereas the same in RRIM 600 was 0.006 g 

cm’̂ .

4.3.2 Glass house experiment

4.3.2.1 Effect of water stress on basal diameter

When the effect of water stress on basal diameter was studied (Table 

18), there was significant genotypic effect for the difference in basal diameter 

under water stress. In most of the wild genotypes and in control clones, water 

stress reduced the basal diameter. Girth reduction in Hevea clones as a result of 

water stress has been reported earlier and the result obtained in the present study 

confirms the earlier reports. When the difference in basal diameter was expressed
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as increase or decrease percentage, the highest reduction percentage was noticed 

in AC 1044, followed by AC 728 and the lowest in the genotype MT 41. The 

decrease in basal diameter was 1.58 per cent in RRIM 600, 1.66 per cent in Tjirl 

and 3.68 per cent in RRII 105. The genotypes MT 76, MT 938, MT 6 6  and 

AC 652 expressed slight increase in basal diameter under water stress. Under 

non-stress condition, basal diameter had increased in all the genotypes and the 

maximum increase rate was noticed in Tjirl, followed by MT 6 6 . In the clones 

RRIM 600 and RRH 105, the percentage increase of basal diameter was on par. 

Growth depression in terms of basal diameter was compared under non-stress and 

stress conditions, where the maximum growth depression was noticed in the clone 

Tjirl, followed by AC 1044. The growth depression observed in RRII 105 was 11 

per cent which was more than that in RRIM 600 where the depression was 9 per 

cent. AC 652 expressed the lowest growth reduction of 2.48 per cent and the next 

genotype with less growth reduction was AC 446.

4.3.2.2 Effect of water stress on dry matter production.

The dry weight of the scion portion under non-stress and stress conditions 

were considered for calculating the dry matter stress tolerance index (DMSI) and 

the results are shown in Table 19. Under non stress condition, almost all the 

genotypes produced more or less similar quantity of dry matter. The range varied 

from 17.93 - 28.! g with a mean diy matter production of 22.63 g. Among the 

wild genotypes, the highest dry matter production was obtained in the genotype 

MT 938 followed by AC 1044 and the lowest was in AC 652. All the 3 standard 

clones had comparable dry matter production which was similar to the mean 

value.

However, under stress condition the wild genotypes as well as the 

control clones reacted differently. The dry matter production was considerably 

reduced in all the genotypes. The range was between 6.97 - 19.83 g with a mean



Table 19. Dry matter stress tolerance index (DMSI) of selected genotypes of 
Hevea brasiliensis at juvenile stage

Genotype Non stress (g) Stress (g) DMSI

AC 1044 26.10 12.33*’ 53.86*’"
MT55 26.01 9.27*’ 63.99
AC 446 21.70 14.01 35.79

RRIM 600 23.93 10.57*’ 56.25 *’

Tjirl 24.62 6.97*’ 71.70“

MT41 19.02 13.00*’ 31.80^^'

MT76 23.37 13.39*’ 43.65

MT 6 6 21.63 7.67*’ 64.51 “*’

MT 938 28.10“ 19.83 “ 30.49

AC 650 18.87'’ 7.50 *̂ 60.50 '**’

AC 652 17.93^ 13.13*’ 27.85 *■

RRII 105 21.33 12.87*’ 40.34

AC 728 21.61 12.47*’ 43.23

Mean 22.63 11.77 47.99



value of 11.77 g. Though there was significant reduction in dry matter in all the 

clones, the reduction in Tjirl was so drastic. Analysis of data indicated 

significant genotypic difference.

The range in terms of DMSI varied between 27.85 - 71.7 with a mean 

of 47.99. The highest stress tolerance in terms of DMSI was noticed in the wild 

genotype AC 652 followed by MT 41 v\4iere the values were 27.85 and 31.8 

respectively, whereas the lowest was noticed in the genotype MT 6 6  (63.99) 

followed by MT 55 (64.51). The tolerance index in the control clones RRIM 600 

and RRn 105 were 56.25 and 40.34 and that of Tjirl was 71.7. There was 

significant genotypic difference for the DMSI worked out.

4.4 Genetic variability for drought related biochemical parameters

The variability present among the genotypes for the epicuticular wax 

content (ECW), total chlorophyll content and chlorophyll reduction percentage as 

a result of heat treatment rs ’ shown in Table 20. The total wax content among the 

genotypes varied from 19.31 - 44.04 ng cm'^ with a mean o f28.07 ng cm‘̂ . Clone 

RRn 105 recorded the highest ECW content and the lowest was in MT 938. 

Among the wild gaiotypes, MT 41 and AC 652 recorded relatively high ECW 

content. The ECW content of the drought susceptible clone Tjirl (31.94 ^g cm'^) 

was more than that in the drought tolerant clone RRIM 600 (26.76 ^g cm'^). 

Scanning electron micrographs of the adaxial leaf surface of RRIM 600, RRII 

105, Tjirl and MT 41 showing the variation in epicuticular wax content are given 

in Plates 1 to 4. Analysis of the data indicated significant genotypic difference in 

the ECW content of these genotypes.

The total chlorophyll content also varied from 1.75 - 4.65 mg cm‘̂  with 

a mean of 2.8 mg cm l  The highest was recorded in the clone Tjirl, followed by
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Table 20. Variation in leaf epicuticular wax (ECW), chlorophyll content and 
chlorophyll reduction per cent in the young plants of different 
genotypes of Hevea brasiliensis

Genotypes ECW
(Hgcm' )̂

Chlorophyll content 
(mg cm’̂ )

Chlorophyll reduction 
(%)

AC 1044 24.91 2.98“ 2 .0 2 *̂
MT55 25.55 2.93' 15.19*
AC 446 25.24 1.75* 1 .2 0 ^
RRIM600 26.76“* 3.38* 0.92 f
Tjirl 31.94** 4.65” 11.29"
MT41 3912«b 3.63* 4.64'
MT76 26.24 “* 2.90* 1 2 .6 6 *"
MT6 6 22.32 3.47* 7.59“*
MT938 19.31 1.84* 1.91*^
AC 650 25.05 1.79* 12.77 *"
AC 652 28.89"* 2.45* 4.88
RRH105 44.04* 2 .0 0 * 1.25'
AC 728 25.47 “* 2.64* 8.09'
Mean 28.07 2.80 6.49

Any two means having a common letter are not significantly difTerent



MT 41, MT 66 and RRM 600. Lowest chlorophyll content was observed in the 

genotype AC 446 followed by AC 650. There was significant genotypic difference 

for the total chlorophyll content studied among the selected genotypes.

Chlorophyll reduction percentage after heat treatment was worked out 

in each genotype in order to assess the variability in chlorophyll stability in the 

genotypes when they are exposed to heat stress. The percentage reduction varied 

from 0.92 - 15.19 with a mean of 6.49. The highest chlorophyll reduction was 

noticed in the wild genotype MT 55 followed by AC 650 whereas the lowest was 

in the control clone RRIM 600, followed by AC 446 and RRH 105. The 

chlorophyll reduction percentage as a result of heat treatment was fairly high in 

the genotype MT 76 and in the clone Tjirl. There was significant genotypic 

difference for chlorophyll reduction among these wild genotypes and control 

clones.

4.5 Genetic variability for drought related anatomical parameters

4.^.1 Leaf anatomical characters

The variability among the selected genotypes for the various leaf 

anatomical characters studied is presented in Table 21. The number of stomata 

per mm̂  of leaf lamina varied from 276.99 - 481.48, with a mean stomatal density 

of 376.19. The highest number of stomata was seen in the genotype MT 66 

followed by AC 1044 and the lowest in the genotype AC 446. The stomatal 

density of control clones RRIM 600, Tjirl and RRII 105 were 356.67, 446.62, 

and 427.01 respectively. Scanning electron micrographs of the abaxial leaf 

surface of RRIM 600, RRII 105, Tjirl and AC 446 showing the variation in 

stomatal density and size are given in Plates 5 to 8. In majority of the wild 

genotypes the stomatal number per unit area of leaf lamina was lesser than the 

mean value. There was significant genotypic difference for the number of 

stomata per unit area.
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Cross sectional view of the leaf lamina of the 13 genotypes depicting 

the characters leaf thickness, midrib diameter, palisade tissue thickness,
. I

mesophyll tissue thickness and palisade cell number per unit length are shown in 

Plates 9 to 21. Leaf thickness of the genotypes studied varied from 104.23 - 

129.83 nm and the mean was 119.03 nm. The highest leaf thickness value was 

noticed in the clone Tjirl followed by the wild genotypes MT 76 and AC 652. 

Leaf thickness of RRIM 600 and RRII 105 were 123.77 and 127.27 nm 

respectively. Genotypes AC 1044, MT 76, MT 938 and AC 652 had leaf 

thickness higher than the mean value. Analysis of data indicated significant 

genotypic difference for this character.

The range of midrib diameter was 310.67 - 438.9 nm with a mean of 

361.94 Jim. The highest midrib diameter was recorded in the wild genotype 

AC 1044 followed by MT 6 6  and the lowest was in MT 55. All the control clones 

had comparatively higher midrib diameter. The wild genotypes AC 1044, 

AC 446, MT 41 and MT 6 6  had relatively higher midrib diameter. Analysis of 

data indicated significant genotypic difference.

Thickness of palisade tissue was in the range of 42.42 - 64.65 nm, 

with a mean value of 52.55 jim. Among the wild genotyjjes the highest palisade 

tissue thickness was noticed in AC 652 followed by MT 76 whereas the lowest 

was in MT 938 and in MT 41. The control clones RRIM 600, RRII 105 and Tjirl 

were having comparatively good palisade tissue thickness and in majority of the 

wild genotypes the thickness of palisade tissue was lower than the mean value. 

However, the palisade tissue thickness of the genotypes AC 1044, MT 76 and 

AC 652 was greater than the mean value. Here also, the genotypic difference was 

significant.

The mesophyll tissue thickness measured was in the range of 84.95 - 

114.52 îm and the mean mesophyll tissue thickness was 98.18 nm. The
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genotype AC 652 recorded the highest mesophyll tissue thickness of 109.79 urn 

among the wild genotypes and the lowest was in AC 446. As in the case of other 

leaf structural parameters, the mesophyll tissue thickness among the control 

clones was higher than the mean value. The genotypes AC 1044, MT 76, MT 938 

and AC 652 possessed higher mesophyll tissue thickness than the mean. Here 

also, the genotypes exhibited significant genotypic difference.

Palisade cell number per unit length recorded varied from 24.29 - 35.24 

with a mean of 31.3. Among the wild genotypes, the maximum palisade cell 

number was seen in MT 6 6  followed by AC 1044 where the number was 34.59 

and 34.26 respectively and the lowest was recorded in AC 728 with a cell number 
of 26.04. Among the wild genotypes, 50 per cent recorded higher values than the 
mean. The control clones RRIM 600 and RRII 105 recorded higher number of 

palisacje cells than the mean value, whereas the same in Tjirl was far below the 

mean value. Analysis of data indicated significant genotypic difference for this 
character also.

4.5.2 B ark anatom ical characters

Data on total bark thickness, proportion of soft bast region, total latex 

vessel rows, and proportion of latex vessel rows in the soft bast are represented 

in Table 22. The total bark thickness varied fi-om 1.277 - 1.623 mm with a mean 
of 1.398 mm. The highest was in the wild genotype MT 41 followed by MT 6 6  

and the lowest bark thickness was in the genotype AC 650. There was no 

significant genotypic difference for this character, and majority of the wild 

genotypes and the selected control clones were on par.

Similarly, soft bast thickness also did not show any significant 

genotypic difference. The range observed was 0.57 - 0.77 mm with a mean value 

of 0.66 mm. The soft bast thickness was high in the wild genotypes AC 446, 

AC 1044, and MT 6 6  while the genotypes MT 55 and MT 938 recorded lower
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soft bast thickness. The clones RRIM 600 and RRII 105 had comparable soft bast 

thickness, whereas in Tjirl, the value was higher.

The range in the proportion of soft bast thickness was 38.93 - 56.53 per 

ccnt and the mean was 47.67 per cent. Proportion of sotl bast was highest in 

AC 446 and in AC 1044 and the lowest was in MT 55. All the 3 control clones 

had more or less similar soft bast proportion. The genotypes AC 446 and MT 938 

differed significantly for their soft bast proportion.

In the case of total number of latex vessel rows (LVR) the variation 

observed among the genotypes was in the range of 1.33 - 3.33 with a mean of 

2.76. MT 41 recorded the highest LVR, while the lowest was in MT 938. Among 

the wild genotypes, MT 41 had a higher number of LVR than the three controls 

while the value was comparable in AC 1044, AC 446 and in AC 650. There was 

no significant genotypic difference for LVR except for MT 938.

The range in the number of LVR in the soft bast was 1.33 -  2.33 and 

the mean was 1.95. No significant genotypic difference was noticed for number of 

LVR in the soft bast. The proportion of LVR in the soft bast region varied from 

63 - 100 per cent with a mean of 72.41 per cent. Among the wild accessions, 

AC 1044 and MT 41 had the lowest proportion whereas the highest was in 

MT 938. Significant genotypic difference for this character was noticed only in 

MT 938. Compared to RRIM 600 and Tjirl (66.67%), the proportion was low in 

RRU 105 (63%).

4.6 Genetic parameters

Estimates of variability and the genetic parameters were worked out for 

certain important morphological (plant height, basal diameter, number of flushes, 

number of leaves, single leaflet area), anatomical (number of stomata, leaf 

thickness, palisade tissue thickness, palisade cell number per unit length, bark



Table 23. Phenotypic and genotypic coefficients of variation (PCV, GCV), 
heritability (H^) and genetic advance (GA) of selected parameters of 
Hevea genotypes

Characters PCV GCV GA as % of
mean

Plant height 18.69 12.86 47.4 21.57

Basal diameter 17.88 6.17 43.38 21.27

No. offlushes 27.76 17.70 40.70 14.38

No of leaves 40.54 28.23 48.50 25.86

Single leaflet area 23.63 15.66 43.90 16.42

No. of stomata 22.91 12.13 28.00 49.80

Leafthickness 8.24 6.92 70.60 14.26

Palisade tissue thickness 14.69 12.15 68.30 10.87

Palisade number/unit length 12.06 10.16 70.90 5.51
Bark thickness 11.17 10.89 92.00 31.62
TotalnoofL.V.R 26.28 13.26 72.37 58.39
ECW 28.09 21.80 60.60 9.78

Chlorophyll content 33.43 28.97 75.00 11.45

Stomatal conductance 46.11 41.92 83.45 29.55

Transpiration rate 38.31 36.33 88.50 14.58



thickness, total number of LVR), biochemical (ECW and chlorophyll contents) 

and physiological (stomatal conductance, transpiration rate) characters. The 

results are shown in Table 23.

Phenotypic coefficient of variation (PCV) was high for most of the 

morphological characters considered. Total number of leaves exhibited a fairly 

high PCV (40.54) followed by number of flushes (27.76). All the leaf anatomical 

characters had low to medium PCV with the highest (22.91) for number of 

stomata. Among the bark structural traits, total number of LVR had a high value 

o f26.28 while it was 11.17 for bark thickness. Both the physiological parameters

- stomatal conductance and transpiration rate had higher PCV of 46.11 and 38.31 

respectively. The PCV exhibited by ECW content was 28.09 and it was 33.43 for 

chlorophyll content.

Among the morphological characters, total number of leaves exhibited 

maximum genotypic coefficient of variation (GCV) of 28.23 followed by number 

of flushes and single leaflet area where the GCV was 17.7 and 15.66 respectively. 

Among the leaf structural characters studied, palisade tissue thickness exhibited 

maximum GCV of 12.15 closely followed by number of stomata on the leaf 

surface (12.13). Bark thickness and total number of L.V.R. exhibited a GCV of 

10.89 and 13.26 respectively. The GCV of wax content was 21.8 and it was 

28.97 for chlorophyll content. The physiological parameters namely stomatal 

conductance and transpiration rate exhibited a fairly good GCV of 41.92 and 

36.33 respectively.

Estimates of heritability in the broad sense (rf)  indicated medium to 

high heritability for all the characters considered. As expected all the 

morphological characters exhibited medium heritability, whereas all the leaf and 

bark structural characters as well as physiological and biochemical 

characters exhibited a high t f .  The value was comparable for all the leaf



structural characters studied except for number of stomata, which had a low H-

(28.0). For bark structural characters, the for bark thickness was fairly high

(92.0) compared to that of total number of LVR (72.37). r f  for stomatal 

conductance and transpiration rate were 83.45 and 88.50 respectively. Among the 

biochemical characters, ECW content exhibited of 60.60 whereas that of 

chlorophyll content was fairly high (75.0).

Genetic advance (GA) as percentage of mean was estimated, which 

showed low to medium values for almost all the characters studied, except for 

total number of LVR, where a high GA of 58.39 was estimated, which was 

followed by number of stomata (49.8).

4.7 Character associations

The phenotypic and genotypic correlation coefficients worked out for 

various characters are shown in Table 24 and Table 25. Basal diameter showed 

negligible phenotypic correlation and very high positive genotypic correlation 

with single leaflet area and with plant height, the phenotypic correlation was high 

whereas genotypic correlation was negative. Genotypic and phenotypic 

correlation of basal diameter with number of whorls and number of leaves are 

positive and very high. Similarly both phenotypic and genotypic correlation 

coefficients of plant height and number of leaves with number of whorls were 

very high and positive. Number of leaves and interflush distance also showed very 

high and positive correlation coefficients with plant height. Leaf thickness 

showed a high negative genotypic correlation and negative phenotypic correlation 

with single leaflet area, while with palisade tissue thickness both correlation 

coefficients were high and positive. Bark thickness with specific leaf weight 

showed only negligible correlation coefficients. Total number of latex vessel rows 

had veiy high positive genotypic correlation coefficient and negligible phenotypic 

correlation coefficient with number of flushes and with basal diameter, the
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Table 25. Character association between physiological and biochemical 
parameters of Hevea brasiliensis at juvenile stage

Stomatal conductance vs

- Transpiration rate P 0.875

G 1.027

- Leaf temperature P -0.171
G -0.474

Fv/Fm vs

Epicuticular wax vs

- Stomatal conductance P -0.505

G -0.525
- Transpiration rate P -0.527

G -0.554

- Leaf water potential P 0.167

G 1.587

P = Phenotypic correlation 
G = Genotypic correlation



genotypic correlation was very high and positive and the phenotypic correlation 

was negligible. Number of leaves and LVR had negligible phenotypic and 

genoypic correlation coefficients.

Table 25 depict the character association of physiological and 

biochemical parameters. Transpiration rate showed very high positive genotypic 

and phenotypic correlation viith stomatal conductance. Fv/Fm ratio of chlorophyll 

fluorescence showed high negative correlation coefficients with stomatal 

conductance and transpiration rate. Stomatal conductance showed negative 

genotypic correlation and negligible phenotypic correlation with leaf temperature. 

Soil water potential had high positive genotypic and phenotypic correlation with 

stomatal conductance and transpiration rate. Epicuticular wax content showed 

very high positive genotypic correlation and negligible phenotypic correlation 

with leaf water potential.

4.8 analysis

Genetic divergence existing in the population of wild genotypes was 

assessed in terms of “generalized group distance” using Mahalanobis analysis. 

Two separate analyses were done to determine the genetic distance between 

the 13 treatments, one for morphological and structural parameters and the second 

for physiological and biochemical parameters. The clustering of the genotypes 

was done by the Tocher’s method of clustering. The result obtained is presented 

in Table 26. Based on morphological and structural characters, the 13 wild 

genotypes and control clones were grouped into 6  clusters. First cluster contained 

the genotypes MT 6 6  and AC 652 and the second one MT 55 and MT 938. The 

maximum number of genotypes viz., AC 446, RRIM 600, AC 650, RRll 105 and 

AC 728 were in the third cluster. Fourth and fifth cluster have only one genotype 

each, MT 41 and AC 1044 respectively while the last cluster included Tjirl and 

MT 76. The average intracluster distance was 46.11.



Table 26. The distribution of Hevea genotypes into clusters by analysis

Clustering based on morphological 
and structural characters

Clustering based on physiological and 
biochemical characters

Cluster
no.

Genotypes Cluster
no.

Genotypes

1 . MT 6 6 , AC 652 1 . AC 1044, MT 6 6 , AC 652

2 . MT 55, MT 938 2 . MT 55, AC 650
3. AC 446, RRIM 600, AC 

650, RRII 105, AC 728
3. AC 446, MT41,MT 938

4. MT41 4. MT76

5. AC 1044 5. Tjirl, AC 728
6 . Tjirl,M T76 6 . RRIM 600, RRH 105

Average intra cluster distance - 46.11 Average intra cluster distance - 0.81



Clustering based on physiological and biochemical characters also 

resulted in the same number of groups but the position of genotypes in the 

clusters was different. However, both clustering grouped the control clones 

R R I M  600 and RRII 105 into one cluster while the clone Tjirl was included in 

another cluster. Average intracluster distance here was 30.81.

4.9 Selection of superior genotypes based on rank sums

The ranking of each genotype based on parametric relationships with 

drought tolerance are shown in Table 27. The rank sums varied from 65 to 121. 

The highest rank sum was obtained by the genotype M T  41, followed by M T  55 

and A C  650. The lowest rank sum was shown by the genotype M T  66, closely 

followed by M T  938.
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Discussion



DISCUSSION

5.1 Genetic variability for cell membrane thermostability among wild
Hevea germplasm

Generally in field condition, the plants are seldom exposed to single 

stress and they are often exposed to multiple stresses. In nature, temperature often 

interacts with water deficit and hence screening of a genotype either for water or 

high temperature stress alone will be of limited use for perennial tree crop like 

Hevea. Polyethylene-glycols (PEG) of high molecular weight have long been used 

to simulate drought stress in plants as a non-penetrating osmotic agent lowering 

the water potential in a way similar to soil drying (Bressan et al, 1981; Larher 

et al., 1993). The combined treatment of samples with P E G  and heat is a suitable 

method for estimating the stress tolerance of Hevea to water and high temperature 

stresses (Nair et al, 1995). Hence the laboratory screening method adopted in 

this study for osmotic and heat stress is a useful method of screening while 

dealing with a large number of germplasm materials. This is in agreement with 

Ashraf et al. (1996), who used cell membrane stability for screening and 

identified this as the most usefiil and efficient method for screening wheat 

germplasm for drought tolerance.

In the present study, the relative injury to cell membrane varied from 

30-80 per cent with significant genotypic difference. The genotypes A C  446, 

A C  652 and M T  80 expressed very low injury to their cell membrane, indicating 

the ability of these genotypes to withstand heat and water stresses. Significant 

genotypic difference observed for cell membrane in Hevea is in accordance with 

earlier reports of Rajgopal et al. (1988) and Nair et al. (1995 and 1999). 

Significant varietal difference for this character was noticed in pepper leaves by 

Yao Yuangan et al. (1998). The significant genotypic difference for cell 

membrane stability indicates difference in their cellular sensitivity to desiccation 

stress. The genotypes coming under the extreme ranges indicate the availability of



broad genetic base in this germplasm material for this particular trait, which is 

highly useful for employing selection in further crop improvement programmes. 

Nagarajan and Bansal (1986) opined that the tissue conductivity method, which is 

relatively simple and uses only a few leaves, could be successfully applied to 

screen a segregating population.

The moderate genotypic coefficient of variability and a lower value of 

phenotypic coefficient of variability for this character, indicate that the influence 

of environment is less. Hence it is a trait that can be used in selection and 

breeding for crop improvement programme which is again supported by the high 

heritability value (87%) obtained for this character. Highly significant general 

combining ability (GCA) and specific combining ability (SCA) for cell membrane 

thermostability in common wheat reported by Xu Ruqiang et al. (1998) reflect the 

additive genetic value of this trait.

5.2 Genetic variability for drought related physiological parameters

The study was undertaken with an idea of assessing the genotypic 

performance under different levels of induced water stress. The effect of different 

intensities of water stress on the expression of certain physiologically related 

parameters was studied. This will lead to a better understanding of genotypic 

response to drought intensities as well as identification of drought related 

parameters, which ultimately reduces the task of further detailed studies in this 

field.

5.2.1 Leaf temperature

In this study, significant genotypic difference could be observed only in 

the stress (S-3) period, because in general the air temperature during the entire 

recording period was more or less constant (Appendix I). Even then, the different 

intensities of water stress had some effect on genotypes. Under the severe water



stress (S-3) period this difference was more clearly expressed and when this was 

compared with the corresponding non-stress period (NS-3) of irrigated plants, the 

genotypic difference, the different water levels as well as the interaction effect 

was significant. This indicates clearly the genetic variability among the wild 

genotypes.

The leaf temperature was increased in almost all the genotypes under 

S-3 level than non stress period. Increase in leaf temperature in the water stressed 

plants has been noticed in the field condition by Teeri (1980) which affect the 

metabolism via the kinetic properties of the enzymes and by heat injury (Berry 

and Bjorkman, 1980). Mid day stomatal closure has been observed in oil palm 

due to increase in leaf temperature (Rees, 1961). The highest leaf temperature of 

about 36°C observed in the wild genotype M T  76 indicates that this genotype 

does not reflect the visible light as effectively as others. Johnson et al. (1983) 

have correlated increased reflectance with the water balance maintenance by the 

reduction in leaf temperature. In coffee a negative relation between leaf 

temperature and stomatal conductance has been observed by Golberg et al 

(1984). The impact of leaf temperature in the regulation of assimilation rate also 

has been reviewed by Farquhar and Sharkey (1982). Golhar and Dhopte (1996) 

have described the importance of leaf temperature as a parameter for identifying 

drought tolerant pigeon pea. Ranalli et al. (1997) identified the potential use of 

canopy temperature as a tool for drought screening of potato germplasm. Hence, 

variation observed in the present study among the wild germplasm for leaf 

temperature under different water stress levels indicates that the wide genetic 

variability is present in this material.



The highly significant genotypic difference obtained for stomatal 

conductance under each water level, clearly indicates the genetic variability 

present among the wild genotypes for this water relation component. The highest 

stomatal conductance recorded by the clone Tjirl under normal condition, gives 

an indication of this clone being drought susceptible, whereas the wild genotype 

A C  652 is having more stomatal control indicated by the lowest stomatal 

conductance under non-stress. But this response was not constant when the stress 

intensity was increased. Under severe water stress (S-3), the genotype M T  41 

exhibited a good stomatal control, whereby the stomatal conductance was reduced 

to the minimum, which was comparable to the standard clone R R U  105. The 

accepted drought tolerant clone R R I M  600 showed more conductance than this 

wild genotype. The higher stomatal conductance observed in the genotypes 

M T  66, M T  938 and A C  728, compared to the drought susceptible clone Tjirl 

indicates the poor stomatal control of these genotypes under water stress 

conditions. All the genotypes responded very well to the irrigation given after the 

stress period. The higher stomatal conductance of R R I M  600 and A C  652 at post 

stress level indicates their most efficient way of water regulation by stomatal 

control.

A  common response of crops to water stress is stomatal closure which 

reduces fluxes of both C O 2 and water vapour thus preventing leaf dessication 

(Rajagopal and Sinha, 1979; Farquhar and Sharkey, 1982; Schulze, 1986), In 

wild Hevea genotypes, this impact is clearly seen during the stress period (S-3) 

among the genotypes A C  1044, M T  55, A C  446, M T  41, M T  76 and A C  728. All 

the standard clones R R I M  600, Tjirl and RRII105 showed the same trend but the 

reduction was more in RRJl 105, which is in conformity with the earlier report of 

Rao e/ al. (1988). The reduction of stomatal conductance observed in most of the



n

genotypes, under water stress level is similar to the report of Zhang et al. (1997) 

where there was a reduction in stomatal conductance of ponderosa pine under 

water stress.

The maintenance of water balance in coconut by effective stomatal 

regulation has been reported by Milbum and Zimmermann (1977), Rajagopal 

et al (1986), and Bai et al. (1988). Similar observation has been reported in other 

tree crops like cocoa (Balasimha et al., 1988) and cashew (Balasimha, 1991). In 

Hevea, Cenlimans et al. (1983) and Chandrashekar et al. (1990) have reported the 

adverse effect of severe drought on stomatal conductance. The importance of 

considering the stomatal performance index for juvenile identification of drought 

tolerant Hevea clones has been identified by Chandrashekar (1997).

S.2.2.2 Transpiration rate

Water stress significantly reduced the transpiration rate. As in the case 

of stomatal conductance, the transpiration rate was also low in the wild genotype 

A C  652 and high in the clone Tjirl which again support the previous result 

obtained for stomatal conductance. But when the stress intensity was increased to 

S-2 level, the minimum transpiration rate was recorded by the wild genotype 

M T  41 which was holding third position in the case of stomatal conductance. But 

for both parameters, the maximum was recorded by the wild genotype A C  728 

under S-2 stress level. W h e n  the stress intensity was further increased to S-3 

level, the minimum transpiration rate was recorded by the wild genotype A C  1044 

which was in the third position with respect to stomatal conductance under S-3 

level. However, it is an indication that the wild genotypes M T  41 and A C  1044 

are having good stomatal control during water stress condition, which is a useful 

indication for the selection programme. In addition to M T  41 and A C  1044 the 

other genotypes M T  55, A C  446 and A C  652 also exhibited a good stomatal 

control under water stress levels compared to the clone R R I M  600.



As the transpiration water loss from leaves is regulated by the stomata, 

transpiration showed a positive trend with that of stomatal conductance, i.e., with 

the increase in stomatal conductance, there was a concomitant increase in 

transpiration rate. A  direct relationship between stomatal frequency and 

transpiration rate was shown in eight barley lines by Miskin et al. (1972). In 

coconut, comparatively lower transpiration rate was found in the drought tolerant 

types than in the susceptible types. Comparatively low transpiration rates 

observed in the wild genotypes M T  41 and A C  1044 under water stress levels 

indicate the possibility of them being drought tolerant genotypes.

The highest rate of transpiration recorded in the clone Tjirl under non­

stress condition is in conformity with the earlier report of Devakumar et al. 

(1988). This may be because of more heat absorption due to the low cuticle 

thickness in Tjirl (Rao et al., 1988). The lowest rate of transpiration recorded by 

the wild genotypes M T  41 and A C  1044 under various stress levels indicate their 

ability to maintain better plant water status. Close association between stomatal 

resistance and transpiration rate during stress period has been reported by 

Gummuluru et al. (1989) and hence lowest transpiration rate of M T  41 and 

A C  1044 may be due to the higher stomatal resistance or the lowest stomatal 

conductance obtained in the present study. The higher transpiration rate recorded 

in the wild genotypes A C  728 and M T  938 during stress period is due to the 

higher stomatal conductance or lower stomatal resistance. This observation leads 

to clonal variation in Hevea for stomatal behaviour.

5.2.2.3 Leaf water potential

Higher leaf has been used as an index for tolerance to drought in 

many crops like cotton (Ackerson, 1977), cocoa (Balasimha et al., 1988) and 

coconut (Rajagopal et al., 1988). Changes in T  leaf depend on both soil water 

supply and the evaporative demand of the atmosphere. Under field condition with



the progressive development of stress there is a reduction in T  leaf (Turner, 1974; 

Blum, 1974; Ehrler et ai, 1978). In this study also, the T  leaf decreased with 

increasing water stress which was in conformity with the earlier report of 

Devakumar et al. (1988) for Hevea clones. The increase in stomatal resistance 

during stress period caused changes in 4̂  leaf by changing transpiration rate 

(Passioura, 1982). So the low stomatal conductance and transpiration rate 

exhibited by the genotype M T  41 under stress period may be the reason for high 

4̂  leaf of this genotype under water stress (S-3) period.

The T  leaf of the drought tolerant clone R R I M  600 and the popular 

clone RRII 105 were significantly lower than this genotype at this water stress 

level. Hanson and Hitz (1982) inferred that T  leaf alone is not a generally 

satisfactory indicator of the plant water stress, and hence other than 'P leaf, there 

are various other factors which determine the drought tolerance of R R I M  600 and 

R R H  105. Again, Devaicumar et al. (1988) suggested that maintenance of higher 

leaf alone is not enough to explain completely the drought tolerance of Hevea 

in terms of yield. The genotypic difference noticed for xj/ leaf in this study is in 

conformity with the earlier studies undertaken in various tree crops and this 

genetic variability is highly essential for employing selection for crop 

improvement programmes.

5.2.2.4 Soil water potential

With increasing intensity of water stress levels the T  soil recorded for 

Hevea genotypes decreased considerably which is in conformity with the earlier 

reports. This decrease in 4̂  soil is reflected in the T  leaf of certain genotypes 

whereas in others, there was no direct relation between T  leaf and T  soil. This 

indicates that the wild genotypes react differently with different intensities of 

water stress and some genotypes extract more water from the soil to withstand the



stress conditions and thereby reducing the available soil. In Hevea one reason 

for low rubber yield during summer is soil moisture stress (Chua, 1970) and 

hence the differential response of wild Hevea genotypes to '1̂ soil at stress 

condition is a positive indication of the scope of applying selection in this 

material for identifying suitable drought tolerant genotypes.

5.2.3 Chlorophyll fluorescence

Changes in chlorophyll fluorescence may well occur before any 

physical signs of deterioration are evident. Early indications of these changes 

allow the collection of valuable data on the onset of stress condition and the 

threshold of tolerance to increasing demands. Hence chlorophyll fluorescence 

measurements is a useful tool for rapid screening of large number of germplasm 

materials for stress tolerance.

Initial fluorescence (Fq) is known to be affected by any environmental 

stress that causes structural alterations at the photosystem II pigment level. 

Thermal damage of PS II is characterized by a drastic increase in Fq. Here also, 

the Fo under stress condition was drastically increased for all the genotypes 

whereas in the clones RRII 105 and R R I M  600 this drastic increase was 

comparatively lesser than other wild genotypes. In the drought susceptible clone 

Tjirl, the drastic increase of Fq under stress level further confirms its drought 

susceptibility. The variations in the increase occurred for Fo among the wild 

genotypes indicates their genetic variability for the thermal damage of PS II.

Fm, the maximal fluorescence, is decreased after exposure of leaves to 

high but not injurious temperatures. More severe stress results in an increase in Fo 

and a decrease in F„, accompanied by inhibition of PS II activity. In the present 

study also, the F^ was decreased at water stress condition. In clone Tjirl and in 

the wild genotypes M T  76 and M T  66 the inhibition of PS II activity might have 

occurred more as indicated by their high reduction of Fv, the variable
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fluorescence (Fm-Fo) is usually lowered by environmental stress which causes 

thylakoid damage. The reduction of Fy under stress condition observed in this 

study also confirms this and the reduction was more in the clone Tjirl and in the 

above mentioned genotypes, indicating their susceptibility towards drought stress.

In Hevea brasiliensis light induced inhibition of photosynthesis under 

drought and cold stress has been reported by Sathik et al. (1998) and drought 

induced photooxidative stress and inhibition in photosynthesis by Jacob et al. 

(1999). The ratio Fv/Fn, has been shown to be proportional to the quantum yield 

of photochemistry (Butler and Kitajima, 1975) and shows a high degree of 

correlation with the quantum yield of net photosynthesis of intact leaves 

(Bjorkaman and Demmig, 1987). Hence, early detection of reduced 

photosynthetic capacity of the observed plants can be achieved non-destructively 

by the measurement of chlorophyll fluorescence. In this study, the wild genotypes 

A C  1044, M T  55 and A C  652 showed higher photosynthetic capacity as indicated 

by the less reduction of Fv/Fm under stress conditions. The Fv/Fm ratio of clones 

R R I M  600 and RRII 105 was also high whereas the same in Tjirl was very low 

and was grouped with the wild genotypes M T  76, M T  66, M T  938 and A C  728 

for their reduced photosynthetic capacity.

The ratio F^/Fq depends on leaf water potential and in drought 

conditions has been shown to drop to 1, i.e., no variable fluorescence will be 

produced after several days of drought. Here also, this ratio was above 3.0 for all 

the genotypes when they were under non stress condition but dfopped to below or 

near to 1 as an effect of water stress. Much reduction was noticed in the wild 

genotypes M T  76, M T  66 and A C  728 and this was same for the clone Tjirl.

The drastic increase of Fq and the reduction of Fm, Fy, Fv/F„, and Fn/Fo 

observed under water stress condition in this study is in support of earlier reports. 

Chlorophyll fluorescence showed significant differences in cocoa at seasons and



between accession types (Balasimha, 1992; Balasimha and Daniel, 1994 and 

1995). The Fv values in their study were lower during drier months as compared 

to other months. The F(, was significantly higher in drought susceptible cocoa 

accessions. The results of this study suggest that relative chlorophyll iluorescence 

can be used for screening Hevea accessions for their drought tolerance.

5.3 Genetic variability for drought related morphological parameters

5.3.1 Field experiment

5.3.1.1 External appearance

In Hevea growth and yield are mainly affected under drought 

conditions and hence, clones with good growth and vigour even in the initial 

stages of growth are highly preferred for drought affected areas. The 

morphological characters like plant height, basal diameter, number of leaves, leaf 

area etc. give an indication of the general vigour of the genotype and hence these 

characters studied at the juvenile stage itself hold some importance. The 

significant genotypic difference observed in almost all the morphological 

characters studied among the wild genotypes indicated the wide genetic base of 

these material which is highly useful for crop improvement. The wild genotypes 

expressed the maximum genetic variation for almost all the characters recorded, 

whereas in the standard clones R R I M  600, RRII 105 and Tjirl the genetic 

difference was nil except for number of leaves. This further indicates the scope of 

selection from the wild genotypes for crop improvement. Plant height and basal 

diameter are highly correlated and hence wild genotypes with more height will 

also express higher basal diameter. The wild genotype M T  41 possessed the 

maximum number of leaf flushes as well as the maximum number of leaves. 

Height and basal diameter of this genotype was also high, indicating the vigorous 

growth nature of this genotype.



The variability observed in single leaflet area indicates the genetic 

variation present among these genotypes for the available transpirational area and 

all the control clones had lesser leaflet area. The reduction in leaf area helps the 

plants to adopt to periods of drought which might be due to the advantage in 

reducing transpiration. So the lowest leaf area recorded for the genotype M T  76 

is an advantage for reducing the transpirational water loss. Variations in leaf 

expansion rate in cocoa accessions under water stress has been reported by 

Balasimha (1982). Conceicao et al. (1986) noticed a reduction in leaf number, 

flushes, shoot length and diameter in Hevea clones as a result of water stress. The 

interflush distance indicates the transportation distance and hence a low interflush 

distance is a positive sign where the translocation as well as partitioning of 

photosynthates will be more effective. In addition to that, they can provide mutual 

shading also. So the low interflush distance recorded in the genotypes M T  41, 

M T  76, M T  66 and A C  652 is; more advantageous under drought stress 

conditions.

S L W  did not differ significantly among genotypes, even though there 

was slight variation for this between these genotypes. Accessions with high S L W  

are preferred under drought conditions and hence the comparatively higher S L W  

noticed in the wild genotypes M T  55, M T  41, M T  76, M T  66, M T  938, A C  650 

and A C  652 will be a valuable trait for germplasm material. Cocoa accessions 

with high S L W  were found to be drought tolerant (Balasimha, 1987) and S L W  is 

a good indication of leaf structure. In this study the majority of the genotypes 

with higher S L W  appeared to be M T  genotypes.

5.3.2 Glass house experiment

5.3.2.1 Effect of water stress on basal diameter

The reduction in basal diameter among the wild genotypes including 

control clones under water stress was as expected. The increase of basal diameter



recorded under water stress in the genotype M T  41 is advantageous and indicates 

the merit of this genotype. The higher reduction percentage of basal diameter and 

greater growth depression of RRII 105 compared to R R I M  600 confirms the 

drought susceptibility of RRII 105 and drought tolerance of R R I M  600 with 

respect to growth. The lowest growth depression noticed in the genotype A C  652 

highlights the worth of this genotype being suitable for a drought condition.

5.3.2.2 Effect of water stress on dry matter production

Leaf area and dry matter are the two plant characters that determine the 

total biological productivity, but partitioning of the total biological yield is the 

most important inherent character that determines the economical yield (Donald 

and Hamblin, 1976). Significant reduction in dry matter as a result of drought 

stress is reported in various crops like tea (Burgess and Carr, 1996), maize (Celiz 

et ai, 1995), field bean and field pea (Grzesiak et al., 1997), coconut (Rajagopal 

et al., 1989), eggplant (Byari and Al-Rabighi, 1996) and Hevea (Vijayakumar 

etal., 1998).

Stress tolerance level can be understood by calculating DMSI. Low 

D M S I  by the genotypes A C  652 and M T  41 indicates their ability to produce 

more dry matter even at water stress condition. The highest D M S I  shown by the 

clone , Tjirl explains the reason of it being drought susceptible. The genetic 

variability present in the wild germplasm materials for D M S I  again points out to 

the genetic potential of this materials which can be exploited well for drought 

resistance breeding.

5.4 Genetic variability for drought related biochemical parameters

The significant genotypic difference for the total E C W  content present 

among the genotypes studied indicates the wide genetic variability present in 

these materials. E C W  content in Hevea increases due to stress and helps the



plants to withstand drought (Vijayakumar et al, 1998). The role of E C W  in the 

maintenance of water balance has been reported in various crops such as cocoa 

(Balasimha et al., 1995), rubber (Rao et al, 1980) and coconut ( Rajagopal et al., 

1988). Higher wax content helps in the adaptation of the plant to the drought 

conditions by reducing the stomatal conductance and cuticular transpiration. 

A m o n g  the wild genotypes, the highest E C W  content expressed by M T  41 

indicates the possibility of it being a drought tolerant one. This may be the reason 

for the highest leaf water potential of this genotype observed under water stress 

(S-3) level. In coconut Rajagopal et al. (1991) have observed a negative 

correlation of E C W  content with transpiration rate. In addition to this, the 

presence of E C W  on the leaf surface helps to reflect the excess solar radiation 

thereby maintaining the leaf temperature to a minimmn level. Comparison of wax 

content was found to vary with species, seasons and also with intensity of light 

which will affect the cuticular transpiration as reported by Baker (1974) and 

Baker et al. (1979). From the significant genotypic difference observed for the 

wax production, it is clear that wide genetic variability is present among the wild 

Hevea germplasm material which can be utilised effectively in crop improvement 

programmes.

Chlorophyll is the major pigment which is affected during stress 

(Ludlow and Bjorkman, 1984). Reduction in chlorophyll content in unirrigated 

coconut palms during stress period was reported by Sivashankar et a/. (1991) and 

in rainfed Hevea by Vijayakumar et al. (1998). The highest chlorophyll content 

observed for the wild genotype M T  41 again highlights the importance of this 

genotype for considering under drought stress situation. The genetic variation 

exhibited by the wild germplasm materials indicates the scope of identification of 

better genotypes performing under stress conditions.

The per cent reduction in total chlorophyll at a given high temperature, 

gives an idea about the stability of chlorophyll in the genotypes. The decrease in



chlorophyll content due to high temperature stress and water stress is due to loss 

of chloroplast membrane integrity under water deficit, which is correlated to 

enhanced activity of acid phosphatases localised on chlorophyll membrane. They 

also observed the perturbation in the structural organisation of chloroplast 

membrane causing a reduction in efficiency of the membrane dependent electron 

transport of photosynthesis. It has also been reported that majority of the 

chlorophyll loss in response to water loss occurred in the mesophyll cells and this 

loss was mainly due to reduction in the lamellar content of high harvesting 

chlorophyll a/b protein (Alberte et al, 1977).

Chlorophyll reduction percentage is negatively correlated with yield 

and can be used to screen the genotypes for tolerance to heat. Hence low 

chlorophyll reduction percentage observed in wild genotypes A C  446, M T  938, 

A C  1044 and M T  41 is a good indication for better yield under high temperature. 

Though the total chlorophyll content in the control clone Tjirl was more than in 

R R I M  600 and RRII105, the chlorophyll reduction percentage was very high in 

Tjirl whereas it was least affected in R R I M  600 and RRII 105. This may be one 

of the reasons for drought susceptibility of the clone Tjrl and drought tolerance of 

R R I M  600 and RRII 105. Hence the wide genetic variations present in this aspect 

among the genotypes studied can be effectively utilised while dealing with large 

number of wild Hevea germplasm material for screening for drought tolerance. 

The superiority of the wild genotype M T  41 for the various biochemical aspects 

studied is noticeable where there was fairly high E C W  and chlorophyll content 

and a comparatively less chlorophyll reduction percentage.

5.5 Genetic variability for drought related anatomical parameters

5.5.1 Leaf anatomical parameters

The photosynthetic machinery of the plant is situated in the green 

leaves and hence studying the leaf structural characters assumes special



importance. Stomatal pores, which are minute intercellular openings on the leaf 

surface, play an important role in the water balance system of the plant. Jones

(1979) has reviewed the importance of stomatal studies in breeding for drought 

tolerance in crop plants. Since higher number of stomata per plant leaf surface 

would increase the transpirational water loss for crops growing under rainfed 

condition a low number of stomata per plant is found to be desirable (Jones, 

1977). Hence a comparatively less number of stomata present among the wild 

Hevea germplasm especially in the genotypes A C  446, M T  938, A C  650, M T  41 

and A C  652 is advantageous. Since stomatal frequency is influenced by light, 

temperature and water stress, Ciha and Brun (1975) and Henzell et al. (1976) 

suggested that stomatal sensitivity to moisture stress should be taken as an 

indicator rather than stomatal frequency. Fairly high number of stomata per unit 

leaf area and the poor stomatal sensitivity may be the reasons for the drought 

susceptibility of Tjirl. Genetic variability has been demonstrated in various 

stomatal characteristics by Clarke and Smith (1986) which was true in the present 

Study also.

The important leaf structural characters that take part directly or 

indirectly in the water regulation and gas exchange of the plant are thickness of 

leaf blade and midrib, thickness of palisade and mesophyll tissue, and number of 

cells in unit length of palisade layer. All these characters are associated with 

photosynthetic capacity of the plant. Pearcy (1998) suggested that both adaptive 

and genetic dilTerenccs in the rale of photosynthesis per unit leaf area are 

associated with differences in leaf thickness.

Midrib diameter is important for the translocation of photosynthates 

fi-om sites of their production. Mesophyll tissue especially the palisade tissue are 

important for photosynthetic activity due to the presence of chloroplast in them. 

Because of this reason, the number of palisade cell per unit length of palisade 

tissue is important. Considering all these factors it is understood that the wide
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genetic variability expressed by this germplasm materials is beneficial for 

assessing the genetic worth of each genotype while undertaking selection for 

particular situations. According to earlier reports the wild genotypes with greater 

values for leaf thickness, midrib diameter, palisade and mesophyll tissue 

thickness and palisade cell number per unit length of palisade tissue can be 

selected for drought situations.

Accordingly the wild genotypes M T  76, A C  652, M T  938 and 

A C  1044 had higher leaf thickness. Mesophyll and palisade tissue thickness were 

also higher in these genotypes which indicate their higher photosynthetic 

capacity. Even though the leaf thickness and palisade and mesophyll tissue 

thickness were comparatively low in M T  41, palisade cell number per unit length 

of this genotype was higher whereas it was the lowest in the clone Tjirl. This may 

be one of the reasons for comparative drought tolerance of the wild genotypes 

M T  41 and the drought susceptibility of Tjirl.

5.5.2 Bark anatomical characters

Yield in Hevea is a clonal characteristic influenced by environmental 

factors and significant clonal variation in the summer yield drop has been 

reported by George et al. (1980), Sethuraj and George (1976) and Sethuraj 

(1977). Hevea yield is mainly determined by the latex vessel rows present in the 

bark and hence bark anatomical characters have special importance on yield. The 

importance of structural parameters such as bark thickness, number of latex vessel 

rows and diameter of latex vessels as yield contributing factors are well known 

(Gomez et al., 1972, Ho et al., 1973, Ho, 1975 and Sethuraj, 1981) and in Hevea 

the rate of yield depression during drought period varies from clone to clone and 

the extend of variability is influenced by latex flow pattern (Sehuraj, 1976). 

Environmental factors such as soil moisture and atmospheric temperature cause 

turgor pressure variation in the laticifers which can influence the seasonal yield
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variations mediated through total volume of latex as proposed by George et al.

(1980).

The proportion of soft bast and proportion of L V R  in the soft bast in 

Hevea clones give an indication of their response to drought and in earlier studies 

Premakumari et al. (1993) could clearly differentiate the drought susceptible and 

tolerant clone based on this aspect. Significantly high proportion of soft bast and 

L V R  in soft bast were noticed in drought susceptible Hevea clones. Hence, the 

variation noticed among wild genotypes for these characters in the present study 

give an indication of their drought response. Too young age of the genotypes 

considered in the present study for bark anatomical characters may be the reason 

for the absence of significant genotypic variation. Usually in Hevea, bark 

anatomical characters are clearly expressed towards later stage than the juvenile 

stage. Even then the lowest soft bast proportion and the lowest L V R  proportion 

in the soft bast noticed in the wild genotype M T  41 indicate the genetic potential 

of this genotype for drought tolerance.

5.6 Genetic parameters

A  proper understanding of the genetic variation available in the 

population helps to identify the genetic potential of that population. Genetic 

parameters like phenotypic coefficient of variation (PCV), genotypic coefficient 

of variation (GCV), heritability in the broad sense (H^) and genetic advance (GA) 

help in partitioning the genetic variability into heritable and non heritable 

components (Johansen, 1909).

In all the characters considered, the P C V  was greater than GCV, 

indicating the influence of environment. However, the influence was 

comparatively less in the characters plant height, single leaflet area, leaf 

thickness, palisade tissue thickness, palisade cell number per unit length, bark



thickness and E C W  content. P C V  of stomatal conductance and transpiration rate 

was much lower than these characters which was clear from the high proportion 

of G C V  value in relation to their P C V  values. This indicates the involvement of 

genetic factors in the expression of these characters. This result is in conformity 

with the earlier results of Mercy et ah (1993) reported in a set of wild genotypes 

at 18 months age.

Broad sense heritability (rf) is the proportion of total genetic variance 

to the total or phenotypic variance, which reflects the proportion of additive plus 

non-additive genetic variance and is useful in predicting improvement achieved 

by cloning selected trees (Hogarth, 1971). Heritability for all the characters 

considered wa.s medium to high indicating the genetic influence on the 

expression of these characters. Leaf and bark structural characters, E C W  as well 

as the physiological characters had very high H^, which can be effectively 

exploited in the selection programme for the crop improvement, as the heritable 

portion of this character is confirmed.

Heritability estimates along with genetic advance give a clear picture of 

the actual genetic improvement possible for that character. The traits with high 

heritability and genetic advance are controlled by additive gene action and are 

therefore amenable to genetic improvement by selection. Am o n g  the characters 

considered, the total number of L V R  had highest genetic advance of 58.39 which 

indicates that Hevea y'\Q\d. can be improved by selecting genotypes with higher 

number of LVR. Bark thickness possessed the next highest G A  and hence these 

two bark structural characters are less influenced by environment. All the 

morphological characters recorded medium genetic advance which is in 

conformity with earlier report by Mercy et al. (1993) which indicate the influence 

of environment for the expression of these characters and hence the improvement 

expected for these characters will be less. G A  for leaf structural and physiological 

parameters considered was low to medium but the high heritability recorded in



these characters indicate the additive gene action, and hence considerable genetic 

gain can be expected for these characters when included in the selection 

programme. The very low G A  expressed by the number of cells per unit length of 

palisade tissue indicate the non-additive gene action and hence no genetic gain is 

expected. Similar was the G A  for E C W  content which is highly dependent on 

environment.

5.7 Character associations

The nature and extent of relationship between characters in a 

population can be understood by studying the correlations among them. While 

applying selection for crop improvement, the characters associated with a 

particular character under selection also will get a chance to get selected and 

hence selection pressure can be exerted very efficiently in any one of these easily 

discernible characters. Many of the morphological characters had high positive 

correlations with each other making their selection more easy. Along with leaf 

thickness, palisade tissue thickness is also get selected which is useful for 

identifying a suitable genotype for drought condition. Similarly, when genotypes 

with more vigorous growth are selected, there is a chance for getting high yielders 

due to the positive association with LVR.

Fv/Fm ratio gives indication of photosynthetic efficiency and is showing 

high negative correlations with stomatal conductance and transpiration rate. 

Hence, when genotypes with low stomatal conductance and transpiration rale are 

selected for drought conditions, their photosynthetic efFiciency will be more. The 

negative genotypic and phenotypic correlations of leaf temperature with stomatal 

conductance may be due to the transpirational cooling occurring on the leaf 

surfaces.

High positive genotypic correlation of leaf water potential with 

epicuticular wax content may be due to the reduction in transpiration rate when



E C W  is present on the leaf surface. These character associations help, a plant 

breeder to conduct sensible selection among genotypes based on the need.

5.8 analysis

Understanding of genetic divergence of a population is a useful 

prerequisite where the breeder can identify the most distant group as parents for 

hybridization. The wild Hevea germplasm material is a good resource of genetic 

variability and hence more groupings are expected here which was obtained in the 

present study. The grouping of 10 wild genotypes in to 6 clusters in both the 

clustering may be due to the large number of characters considered. W h e n  the 

grouping was done based on morphological and structural characters some of the 

wild genotypes were grouped along with the control clones R R I M  600 and 

RRII 105, indicating the genetic similarity of these genotypes with the standard 

clones for these characters. But when the grouping was based on physiological 

and biochemical characters, the standard clones R R I M  600 and RRII 105 grouped 

distinctly into a separate cluster. This indicates the dissimilarity between v̂ ild 

genotypes and the standard clones for characters associated with physiological 

and biochemical aspects of the plant. In both the clustering the clone Tjirl was 

grouped along with the wild genotype, which clearly indicates the different 

drought response of this clone in comparison to the control clones R R I M  600 and 

RR n  105.

5.9 Identiflcation of superior genotypes based on rank sums

W h e n  the genotypes differ from each other for different drought related 

parameters, a ranking based on the parametric relationship with drought tolerance 

gives a better understanding of the worth of individual genotypes. Hence, some of 

the highly related parameters with drought tolerance were selected and genotypes 

were ranked based on their performance under each selected character. Such a 

ranking was adopted in cocoa accessions, while going for screening drought



tolerance among these accessions (Balasimha et al, 1988). The highest rank sum 

(121) obtained for M T  41 indicates the relative superiority of this genotype for 

drought tolerance. The genotypes next to M T  41 are M T  55 and A C  650. The 

three control clones (RRII 105, R R I M  600, Tjirl) selected for the study and the 

superior genotypes M T  41 and M T  55 identified from the present study are shown 

in Plates 22 and 23 respectively. The lowest rank sum obtained for M T  66 (65) 

indicates its poor performance for this aspect and hence when we go for ftirther 

selection or ftirther studies, it can be concentrated with genotypes M T  41, M T  55 

and A C  650 where the rank sums were higher.



Plate 23. Superior genotypes MT 41 and MT 55 identified from the present study



Summary



SUMMARY

This study was conducted with 99 wild Hevea germplasm lines 

conserved in the Rubber Research Institute of India, Kottayam for a period of 

three years from 1998-2000. The main objective of the study was to assess the 

genetic variability present in this germplasm in relation to drought tolerance. 

Various physiological, morphological, biochemical and anatomical characters 

were examined under non.stress as well as induced water stress conditions. Based 

on the results, superior genotypes among the selected accessions and reliable 

parameters for drought tolerance screening were identified. The results are 

summarised below.

1.' Cell membrane thermostability among the selected 99 wild Hevea 

genotypes showed wide variation and the genotypic difference was 

significant. The relative injury to cell membrane varied from 30-80 per 

cent with a mean of 53 per cent. Genotypes A C  446, A C  652 and 

M T  80 had very low injury to their cell membranes. This trait had a 

moderate G C V  of 22 per cent and a very high heritability of 87 per 

cent. The genetic advance obtained was moderate (22%).

2. O n  the basis of relative injury to cell membrane, the wild genotypes 

A C  652, A C  446, M T  55, M T  66, M T  41, M T  76, M T  938, A C  1044, 

A C  650 and A C  728 were selected for further detailed studies along 

with control clones RRII 105, R R I M  600 and Tjirl.

3. The genotypes recorded a higher leaf temperature under water stress 

condition and analysis of data revealed significant difference among 

genotypes as well as between stress and non-stress conditions.

4. A m o n g  the components of water relation, the stomatal conductance 

was reduced under stress condition and significant genotypic difference 

was noticed for this. W h e n  data were analysed for non stress vs stress



levels, genotypic difference, difTerence between non stress and stress 

and the interaction effect between genotype x non stress vs stress were 

all significant.

5. Transpiration rate also expressed significant genotypic difference under 

each stress level, and the rate of transpiration was reduced, when the 

genotypes were grown under stress condition. Here also, the genotypic 

difference, N S  vs S and interaction between genotype x N S  vs S were 

all significant.

6. Leaf water potential of the genotypes ranged from -3.15 to -2.74 MPa.

With increasing intensities of water stress the leaf water potential went 

on decreasing.

7. Soil water potential under each genotype ranged from -1.76 to -0.314

M P a  and here also T  soil decreased under water stress. Genotypic 

difference, N S  vs S period effect, as well as the interaction between 

genotype x N S  vs S were all significant when stress and non stress 

conditions were compared.

8. The components of chlorophyll fluorescence namely initial

fluorescence (Fq), maximal fluorescence (Fm), variable fluorescence 

(Fv) and the ratios FyPn, and Fn/Fv were studied under water stress and 

non stress conditions. The Fq showed a drastic increase under water 

stress and all the other components showed a reduction under water 

stress. The genotypic difference was significant under both stress and 

non stress conditions.

9. The morphological characters studied includce plant height, basal

diameter, number of flushes, total number of leaves, interflush 

distance, single leaflet area and specific leaf weight. All these 

characters exhibited significant genotypic difference except for S L W  

and interflush distance.



10. Under water stress, the basal diameter of most of the genotypes were 

reduced and the rate of change was significant.

11. W h e n  the genotypes were studied for their drymatter stress tolerance 

index (DMSI), there was significant genotypic difference and the 

highest D M S I  was noticed in A C  652.

12. Epicuticular wax content of the genotypes varied significantly.

13. Chlorophyll content and chlorophyll reduction percentage as a result of 

heat treatment also varied significantly among the genotypes.

14. The stomatal density among the wild genotypes was 276.99-481.48 and 

the genotypic difference was significant.

15. Leaf thickness ranged from 104.23-129.83 |Lim and the genotypic 

difference was significant.

16. Midrib diameter range was 370.67-438.9 jim and differed significantly 

among the genotypes.

1.7. Palisade tissue thickness was in the range of 42.42-64.65 |im and here

also the genotypic difference was significant.

18. Mesophyll tissue thickness differed significantly among the genotypes 

and the range was 84.95-114.52 |im.

19. Palisade cell number per unit length recorded varied from 24.29-35.24 

and the genotypic difference was significant.

20. Bark thickness range among the wild genotypes studied varied from 

1.277-1.623 mm, and there was no significant genotypic difference. 

The reason for this could probably be attributed to the young age of the 

plants.

21. Soft bast thickness ranged from 0.57-0.77 m m  and the proportion of 

soft bast was 39-57 per cent.

22. Total L V R  observed was in the rage of 1.33-3.33 and the proportion of 

L V R  in the soft bast ranged from 63-79 per cent.



23. Am o n g  the characters studied, stomatal conductance and transpiration 

rate exhibited fairly good GCV.

24. Most of the morphological characters had high PCV. All the leaf and 

bark structural characters had low to medium P C V  indicating less 

influence of environment for the expression of these characters.

25. Broad sense heritability (tf) indicated medium to high values for all 

the characters considered.

26. Genetic advance (GA) as percentage of mean was low to medium for 

almost all the characters studied, except for LVR, where the G A  was 

high.

27. Character association studied helped to understand the relationship of 

various characters v«th each other.

28. Genetic divergence was worked out separately for (a) morphological 

and structural characters, (b) for physiological and biochemical 

characters. In both, the genotypes were grouped into 6 clusters each 

indicating the wide genetic distance among the genotypes.

29. The ranking of each genotype based on parametric relationships with 

drought tolerance helped to identify the actual worth of each genotype, 

and based on rank sum obtained, the best genotj^^e identified was M T  

41 followed by M T  55 and A C  650.

Conclusion

The ability of a plant to withstand water deficit is associated with 

numerous plant traits that contribute to drought tolerance. An understanding of 

those characters which are more directly related to drought tolerance helps in easy 

identification of genetic materials which can be used for extensive study in this 

area. The breeder has to be mindful of the best combination of traits and the 

appropriate response strategy for the target environment. Genetic resource like 

wild Hevea germplasm material where there is wide genetic variation for each



individual character provide the breeder a potential genetic stock to work with, in 

the efforts for developing drought tolerant Hevea clone.

In the present study a screening for drought tolerance among wild 

Hevea germplasm was carried out using various physiological, morphological, 

biochemical and anatomical indices. The selected accessions expressed 

significant genotypic differences for most of the parameters studied and their 

response under various water stress levels was significant. This shows the wide 

genetic base of these material, which provide ample scope to identify superior 

genotypes. These can be used as potential parents in future breeding programmes 

for developing varieties suitable for drought stress conditions.

The study reveals that a genotype associated with physiological 

drought tolerance trait need not have anatomical, biochemical or morphological 

traits for the same character. Girth increment during stress period and dry matter 

stress tolerance index were found to be useful for identifying a genotype showing 

drought tolerance. Similarly rate of stomatal conductance during water stress 

period, Fv/Fm ratio of chlorophyll fluorescence parameter, epicuticular wax 

content on the leaf surface and chlorophyll content, were some of the reliable 

physiological and biochemiceil indices for identifying a drought tolerant genotype. 

A m o n g  the leaf structural parameters studied, palisade tissue thickness and 

palisade cell number per unit length gave an indication towards drought tolerance.

Based on the above parameters, the wild genotypes M T  41, M T  55, and 

A C  650 were identified as accessions possessing characters related to drought 

tolerance. In this way, the identified objectives of the present study could be 

fulfilled more or less completely, though drought resistance is a complex factor 

involving a number of physiological, morphological, biochemical and anatomical 

characteristics with unknown inheritance. The nature and importance of these 

characters will vary depending on the pattern, degree and timing of the stress. 

Hence, for evaluating a large number of genotypes for drought resistance, the 

measuring technique used must be simple and fast.
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ABSTRACT

Rubber tree {Hevea brasiliensis Muell. Arg.) is the only commercial 

source of natural rubber and the species is well suited to the equatorial region 

with plenty of well distributed rainfall and minimum fluctuations in temperature. 

With increasing global demand for natural rubber, attempts have been made to 

extend the cultivation of this tree to agroclimatically marginal lands such as 

drought and cold prone areas. But the very narrow genetic base of the cultivated 

Hevea resulted from the development of the species from a limited number of 

seeds introduced by Sir Henry Wickham, limits the scope of extending the clone 

to such marginal areas. A  broad genetic base is a prerequisite for developing new 

varieties tolerant to various stress conditions. Plant genetic resources provide the 

requisite genetic variability and are the most important and vulnerable basic 

materials to meet the current and future needs of plant breeding programmes.

The wild germplasm accessions collected by an expedition of 

International Rubber Research and Development Board (IRRDB) during 1981, 

into the primary centre of origin of the crop, the Amazon forests provide a rich 

source of natural variability in this tree species. Introduction of genes from such 

wild progenitors is an ideal method of broadening the genetic base of cultivated 

Hevea species.

To make more efficient use of these germplasm materials, it is 

necessary to identify morphophysiological traits and structural and biochemical 

traits associated with tolerance to different abiotic stresses in these materials. 

Such a detailed study for traits associated with drought tolerance has not been 

made so far using wild Hevea germplasm materials. Assessing the genetic 

variability for such traits in these germplasm materials will help further to identify 

superior genotypes which can be used as potential parents in future breeding 

programmes for developing varieties suitable for drought stress conditions. Hence



water potentials were decreased. Components of chlorophyll fluoresence viz., 

initial fluorescence (Fq) showed a substantial increase under water stress and all 

other components - maximal fluorescence (Fm), variable fluorescence (Fv), Fv/F^ 

and F„,/Fo showed a remarkable decrease. The selected accessions exhibited 

significant genotypic difference for all the physiological parameters studied and 

the effect of water stress and non stress on genotypes as well as the interaction 

effect between genotype and stress levels were also significant for most of the 

characters. Significance of genotypic difference was worked out statistically 

following Completely Randomised Design (CRD) and Factorial CRD.

Morphological, biochemical and anatomical (leaf and bark) parameters 

related to drought tolerance were recorded from the polybag plants under non 

stress conditions, in order to assess the genotypic difference for these parameters. 

Morphological characters studied include plant height, basal diameter, number of 

flushes, total number of leaves, inter flush distance, single leaflet area and specific 

leaf weight. All these characters exhibited significant genotypic difference except 

for specific leaf weight and inter flush distance.

Epicuticular wax content, chlorophyll content and chlorophyll 

reduction percentage were studied under biochemical parameters. Here also there 

was significant genotypic difference for all these characters.

Leaf anatomical characters studied include stomatal density on the 

lower surface, leaf thickness, midrib diameter, mesophyll tissue thickness, 

palisade tissue thickness and palisade cell number per unit length of palisade 

tissue. All these exhibited significant genotypic difference.

Total bark thickness, proportion of soft bast, total number of latex 

vessel rows (LVR) and proportion of L V R  in the soft bast were the bark structural 

characters studied. There was no significant genotypic difference for these bark



structural characters which might probably due to the juvenile stage of the plants 

selected.

A  glass house study was conducted as Experiment III in order to avoid 

the influence of untimely rains occurred during the recording period. 

Observations on growth of basal diameter and dry matter production under 

stressed and non stressed conditions were studied. Under water stress, the basal 

diameter of most of the genotypes was reduced and the rate of change was 

significant. O n  the basis of dry matter produced, diy matter stress tolerance index 

(DMSI) was worked out which showed significant genotypic difference. The 

highest D M S I  was noticed in the wild accession A C  652.

Genetic parameters viz., phenotypic and genotypic coefficients of 

variability (PCV and GCV), broad sense heritability (rf) and genetic advance 

(GA) as percentage of mean were worked out for the selected characters. As 

expected most of the morphological characters had high P C V  and the other 

parameters had low to medium P C V  indicating less influence of environment for 

the expression of these characters. A m o n g  the characters studied, physiological 

parameters viz., stomatal conductance and transpiration rate exhibited fairly good 

GCV. Broad sense heritability (rf) indicated medium to high values for all the 

characters considered. Genetic advance (GA) was low to medium for almost all 

the characters studied, except for L V R  where the G A  was high (58%).

Character association studied helped to understand the relationship of 

various characters with each other. Genetic divergence existing in the population 

of wild genotypes was assessed in terms of “generalised group distance” using 

Mahalanobis analysis. T w o  separate analyses were done (a) for morphological 

and structural characters and (b) for physiological and biochemical characters. In 

both, the genotypes were grouped into 6 clusters each indicating the wide genetic 

distance among the genotypes.



A  ranking of these genotypes was done for a better understanding of 

the worth of individual genotype, as they differed from each other for different 

drought related parameters. Some of the highly related parameters with drought 

tolerance were selected and based on their relationship with drought tolerance, 

genotypes were ranked for each selected character. Comparing the rank sum 

obtained for each genotype, the superiority of the accessions was assessed. Based 

on this, the best genotype identified was M T  41 followed by M T  55 and A C  650.

From this study it is concluded that drought resistance mechanism is a 

complex factor involving a number of physiological, morphological, biochemical 

and anatomical parameters with unknown inheritance. An understanding of these 

characters, which are more directly related to drought tolerance helps in easy 

identification of genetic materials which can be used for extensive study in this 

area. From the present study it was found that, the parameters such as stomata! 

conductance under water stress, Fv/Fm ratio of chlorophyll fluorescence, growth of 

basal diameter under water stress, chlorophyll and epicuticular wax contents, 

thickness of palisade tissue and palisade cell number per unit length of palisade 

tissue are some of the reliable parameters for identifying genotypes having 

drought tolerance. Extensive studies using these parameters are further required 

in this area, to identify a simple and fast screening technique for the large number 

of Hevea germplasm.
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